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In this supplementary document, we provide imple-
mentation details of GSTAR and other baseline methods
in Sec. 1. Then, we demonstrate more experiment results
in Sec. 2 with qualitative comparisons and ablation studies
that further validate our method’s effectiveness. Finally, we
include an extensive discussion of ethics and societal impact
of our approach in Sec. 3.

In the supplementary video, we demonstrate GSTAR’s
overall pipeline and its performance on various dynamic
scenes. We also provide visual comparisons against base-
line methods.
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1. Implementation Details

1.1. GSTAR Details

Initial Input for the First Frame. GSTAR requires a
mesh as input for each frame. For the first frame, we employ
an RGB-D based multi-view reconstruction method [1] to
generate the initial mesh. The reconstructed mesh is then
down-sampled to contain between 100,000 and 200,000
faces, with the exact count varying according to scene com-
plexity. We attach N = 6 Gaussians to each face, result-
ing in approximately 600,000 to 1,200,000 total Gaussians
(note that the number of faces may dynamically change due

to topology updates). The Gaussian appearance parame-
ters for the first frame are initialized using the mesh texture,
while the opacity, scale, and rotation parameters are set to
predefined values.

Training Time. Our method sequentially processes the
video frames. Each frame requires approximately 5 minutes
of training time on a single NVIDIA RTX 4090 GPU. For
frames where no topology changes are detected, we only
perform fixed-topology surface reconstruction, reducing the
processing time to approximately 2 minutes. Once training
is complete, rendering can be performed in real time.

Remeshing Details. As introduced in Sec. 3.5 of the main
paper, after generating new faces, we update the underlying
mesh topology by integrating newly generated faces with
the original mesh. This process involves removing spe-
cific faces from the original mesh, identifying correspond-
ing newly generated faces, and seamlessly connecting them.

This method begins by identifying original faces where
the unbound weight exceeds a predefined threshold. These
faces are then grouped by their connected components. We
delete any connected components that contain more faces
than a specified threshold. Next, we create a voxel vol-
ume to record the positions of unbound Gaussians from
deleted faces. Within this volume, we identify newly gen-
erated faces and remove isolated faces based on their con-
nected components, preparing them for integration with the
remaining original mesh. The connection process involves
two steps of vertex matching: first, for each vertex x on
the boundary of newly generated faces, we locate its closest
vertex y on the original mesh boundary, set their positions
to y, and merge them; then, for unmatched vertices on the
original mesh boundary, we find their closest vertices on
the new face boundary and perform similar alignment and
merging operations. Finally, we complete the mesh recon-
struction through edge flipping and hole filling operations
to ensure a seamless surface.

1



1.2. Baseline Details

HumanRF [3]. As the official mesh extraction code for
HumanRF is not publicly available, we implemented our
own version following their paper. While we use March-
ing Cubes for mesh extraction, the raw outputs often con-
tain undesirable internal surfaces, such as those inside the
human body. To address this issue, we additionally gen-
erate outer surfaces using TSDF fusion, then remove any
mesh faces that are far from these TSDF-extracted surfaces.
We also implement light annotations in HumanRF to reduce
light bloom artifacts. We capture a background frame to
detect intense light sources and mask the affected image re-
gions. While this enhancement improves the overall quality,
it does not entirely eliminate the artifacts.

Dynamic3DGS [4]. The original Dynamic3DGS paper
primarily focuses on rendering quality rather than geomet-
ric reconstruction. As it does not provide a dedicated sur-
face reconstruction method, we employ TSDF fusion tech-
niques similar to our surface generation approach, combin-
ing depth images from multiple views to obtain the final
mesh. Due to the inherent limitations of Gaussian splatting,
the resulting reconstruction exhibits considerable noise in
the geometry.

2D Gaussian Splatting [2]. 2DGS is designed for recon-
structing static scenes, and we use it to process each frame
independently. For each frame, we initialize the point cloud
using the refined point cloud from [1]. These point clouds
are the ones used for rendering depth inputs from IR cam-
eras. We down-sample each frame’s point cloud to 600,000
points before processing. To enhance geometry consistency,
we incorporate a mask loss similar to our formulation in Eq.
(6) during the training stage. However, under our experi-
mental setup with 47 training views and mask supervision,
2DGS exhibits limited robustness and produces results with
notable temporal jittering.

PhysAvatar [6]. While PhysAvatar’s original paper de-
scribes a pipeline beginning with mesh tracking followed by
clothing reconstruction and simulation, it does not explic-
itly mention SMPL-X dependency. However, their released
implementation utilizes SMPL-X for improved tracking ro-
bustness, particularly in hand regions, as confirmed by the
authors. Without SMPL-X initialization, their method re-
lies on inertial estimates for full-body initialization between
frames, similar to Dynamic3DGS.

For a fair comparison across our diverse sequences con-
taining single humans, multiple humans, and non-human
objects, we implement two variants of PhysAvatar: one
using inertial initialization and another additionally using

SMPL-X deformation for human vertices. As the SMPL-
X fitting code was not publicly available at the time of
submission, we adopted the approach from X-Avatar [5]
to fit SMPL-X using multi-view images and reconstructed
meshes. This fitting is done with a multi-stage pipeline: first
extracting 2D keypoints using OpenPose and triangulating
them to 3D with specific filtering for unstable hand predic-
tions. The SMPL-X parameter optimization then proceeds
through three stages: we first initialize the parameters using
the filtered 3D keypoints, then refine body pose and shape
parameters using the scan geometry, and finally optimize
hand poses and facial expressions using 3D landmarks.

2. Additional Experiments
2.1. Comparisons with Baselines

We provide additional qualitative comparisons with Hu-
manRF [3], Dynamic 3D Gaussians [4], PhysAvatar [6], and
2D Gaussian Splatting [2] in Fig. 1.

HumanRF trains each video segment independently.
This approach leads to slow rendering times and inconsis-
tent tracking. Due to its independent segment training, Hu-
manRF struggles with strong occlusions where most cam-
eras cannot observe certain regions (Fig. 4 in the main pa-
per). In contrast, our method demonstrates greater robust-
ness to occlusion through consistent tracking and scene flow
warping.

2DGS is a static scene reconstruction method, and we
use it to process frames independently for reconstruct-
ing dynamic surfaces. However, its reconstruction quality
varies significantly across frames, with some frames show-
ing impressive results while others exhibit notable artifacts.
Furthermore, as a single-frame method, it produces tempo-
rally unstable reconstructions and does not provide tracking
capabilities.

Dynamic3DGS employs inertial estimation to initialize
Gaussians for subsequent frames. While it supports track-
ing, the geometric quality is limited. Moreover, without an
underlying mesh constraint, Gaussians can move freely in
space, resulting in inconsistent tracking.

PhysAvatar maintains consistent mesh tracking and
achieves high-quality reconstruction for clothed humans
under normal motions. However, its fixed-topology as-
sumption fundamentally limits its ability to handle dynamic
scenes where topology changes occur. In such cases, it fails
dramatically when encountering topology changes due to its
inability to handle such modifications.

2.2. Qualitative Results for Ablations

We illustrate the impact of our key components through
qualitative comparisons in Fig. 2. Without the unbinding
and remeshing components, our method fails to properly
handle topology changes, resulting in incorrectly merged
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Ground Truth HumanRF Dynamic 3D Gaussians PhysAvatar 2D Gaussian Splatting GSTAR (Ours)

Figure 1. Comparisons of appearance and geometry reconstruction. HumanRF offers overall good visual quality but lacks tracking capabil-
ities. Dynamic 3D Gaussians produces blurry renderings and noisy surfaces. PhysAvatar struggles with handling topology changes, while
2D Gaussian Splatting faces challenges with both tracking and floating artifacts. In contrast, GSTAR delivers high-quality reconstruction
and effectively manages topology changes.

geometries between the human head and hood in the first
two rows, and erroneous connections between the separate
boxes. The scene flow warping initialization proves crucial
as well; without it, Gaussians become trapped in local min-
ima and cannot properly redistribute, leading to significant
geometric artifacts.

2.3. Additional Scene Flow Ablation

To demonstrate the effectiveness of our scene flow warp-
ing in handling large motions, we evaluate reconstruction
quality under varying degrees of inter-frame movement. We
conduct this experiment by capturing a sequence at 60 FPS
and systematically down-sampling it to 30 FPS, 15 FPS,
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Ground Truth w/o Unbinding w/o Remeshing w/o Scene Flow GSTAR w/o IR Input GSTAR (ours final)

Figure 2. Qualitative results for ablation study. Unbinding and re-meshing are crucial for handling topology changes, and scene flow
ensures robust tracking of large movements. Our method without IR input yields a similar quality to the full version of our method.

and 10 FPS, effectively increasing the magnitude of motion
between consecutive frames. Comparing our full method
against a variant without scene flow warping reveals that our
approach maintains consistent reconstruction quality across
all frame rates, while the ablated version shows progres-
sively deteriorating performance as inter-frame motion in-
creases.

2.4. GSTAR with RGB input

Our method does not necessarily require the IR depth input.
For example, we can use multiview stereo to create a rough
depth map. Here we use rendered depth from HumanRF for
its robustness and smoothness, which has fewer artifacts.
As shown in the last two columns of Fig. 2, GSTAR works
almost equally well compared to the version with depth in-
put. This means GSTAR can be utilized for capture setup
with RGB input only.
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Figure 3. Scene flow warping ablation. We capture a sequence
at 60 FPS and down-sample it to 30 FPS, 15 FPS, and 10 FPS,
increasing motion between frames. Our method consistently per-
forms well across frame rates, while the method without scene
flow shows higher errors as the motion between frames increases.

3. Ethics and Societal Impact Discussion
Our data collection procedure has been reviewed and ap-
proved by the responsible Institutional Review Board. All
subjects voluntarily participated in the data collection pro-
cess and were fully informed about the intended use of the
data in research.

GSTAR enables the digitization of general dynamic
scenes from multi-view captures, which has broad appli-
cations in visual effects, robotics, and virtual production.
As our method can reconstruct and track detailed surface
changes, there are potential concerns about privacy and
surveillance when applied to scenes involving human ac-
tivities. Such concerns must be addressed before deploying
this technology in commercial products. Our goal with this
work is to enable beneficial applications such as human-
robot interaction, markerless motion analysis, and immer-
sive telepresence. Our system represents a technical ad-
vancement in computer vision that can benefit numerous
fields from industrial automation to cultural preservation.
While we cannot prevent potential misuse of such technol-
ogy, we believe in transparent research practices, including
detailed technical discussions and code release. This open-
ness allows the research community to better understand
both the capabilities and limitations of such systems, and
to develop appropriate safeguards against concerning appli-
cations.
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