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Data-Driven 3D Neck Modeling and Animation
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Abstract—In this paper, we present a data-driven approach for modeling and animation of 3D necks. Our method is based on a new
neck animation model, that decomposes the neck animation into local deformation caused by larynx motion and global deformation
driven by head poses, facial expressions, and speech. A skinning model is introduced for modeling local deformation and underlying
larynx motions, while the global neck deformation caused by each factor is modeled by its corrective blendshape set, respectively.
Based on this neck model, we introduce a regression method to drive the larynx motion and neck deformation from speech. Both the
neck model and the speech regressor are learned from a dataset of 3D neck animation sequences captured from different identities.
Our neck model significantly improves the realism of facial animation and allows users to easily create plausible neck animations from
speech and facial expressions. We verify our neck model and demonstrate its advantages in 3D neck tracking and animation.

Index Terms—Neck modeling, neck animation, speech-driven animation.

F

1 Introduction

Modeling and reconstructing realistic 3D facial anima-
tion play an important role in many graphics appli-

cations, such as movie production, game design, and virtual
reality. In the past years, a number of methods have been pro-
posed for modeling and animating 3D faces [1]–[7] and variant
organs, such as hair [8]–[10], eyeballs [11]–[14], eyelids [15],
[16], teeth [17], and lips [18]. These methods significantly
improve the realism of facial animation. However, there is still
one important part that has not been well studied: the neck.
Although the neck is not part of the head, its motion still gives
significant visual signals for people to recognize a subject’s
expressions and emotions. For example, when people talk, the
neck will deform according to expression, pose, and speech.
Apart from that, when people are nervous or telling lies,
they tend to swallow and it leads to strong neck deformation.
Therefore, modeling and animating the neck become a crucial
task for realistic 3D facial animation.

Anatomically, the underneath muscles, vocal tract, and
larynx cause neck deformation. As a result, the neck defor-
mation is correlated to head poses, facial expressions, larynx
motions, and voice. The main focus of previous methods [19]–
[22] that model neck animation is mainly on head poses and
facial expressions. The neck deformation driven by larynx and
speech is ignored.

In this paper, we propose a data-driven approach for
modeling the shape and full deformation of 3D necks of
variant identities. In our method the neck deformation is
decomposed into local deformation, which is caused by larynx
motions, and global deformation correlated with head poses,
facial expressions, and speech voice. For local deformation, we
introduce a novel skinning scheme to model larynx motions.
For global deformation, we first utilize the blendshape bases of
the FLAME model [22] for head poses and facial expressions,
and then introduce a set of corrective blendshapes to model
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the neck deformation caused by speech. In creating the neck
model, we capture 3D face and neck motion sequences of
different subjects using a multi-view setup. The captured
sequence of each identity consists of 3D facial and neck
animation with different head poses, facial expressions, and
speeches. To learn our neck model from the captured dataset,
we develop an optimization algorithm. Based on the neck
model, we also introduce a regression method for mapping
speech audio to the neck larynx motions and the weights of
speech blendshapes. As a result, users can directly create neck
animations based on speech input. We train the regression
model from the motion sequences and the associated speech
audios in the captured dataset.

Our neck model can be considered as an enhanced FLAME
model with a new larynx skinning model. Similar to FLAME,
our neck model is user-independent and can be directly ap-
plied to different identities. Modeling neck deformation based
on different facial animation factors separately aids our model
to easily generate neck animations consistent with the facial
expressions and speech of different users. We validate our
neck model by 3D neck tracking and animation. As a result,
it has been shown that our neck model not only improves
the realism of character animation, but also enables users
to easily create reasonable neck animations from speech and
facial expressions. To the best of our knowledge, this is the
first work that aims to achieve larynx motion modeling and
speech-driven neck animation.

In summary, the main contributions of our work are as
follows:

• A FLAME-based 3D neck model and a larynx skinning
model that model 3D neck deformations caused by
larynx motion and speech, as well as head poses and
expressions

• A 3D neck and facial animation dataset, which will be
released to the community for research use

• A novel optimization method for constructing the neck
model from the data

• A regression model for generating 3D neck animation
from the speech audio
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2 Related work
In this section, we discuss the previous work that is directly
related to this paper. Please refer to [23] for a comprehensive
survey on 3D face modeling and animation.

2.1 Facial performance capturing and reconstruction
There have been a set of methods proposed for capturing
and reconstructing high-quality 3D facial performance of real
subjects. Beeler et al. [1] developed a camera rig in an en-
vironment with controlled lighting to achieve fine-scale facial
motion reconstruction. Huang et al. [2] use face markers in a
pre-processing step to solve the temporal consistency in the
reconstruction. Shape from Shading (SfS) techniques [24] are
also utilized in reconstructing facial details from monocular
RGB videos [25], [26], which largely simplify the setup for
facial detail reconstruction. Garrido et al. [18] reconstruct ac-
curate lip motions through lip tattoos and multi-view capture
system. Since the neck region lacks texture, we follow the
method in [18] and also use tattoos and multi-view capture
system for capturing the high-quality 3D face and neck ani-
mation sequences for model regression.

2.2 Models for 3D facial animation
Data-driven face models build a generic representation of
face shapes and expressions of different identities from a face
dataset. Blanz and Vetter [27] propose a Morphable Model
to represent the shape variations of different identities, while
a Blendshape model [28] is used to model facial expressions.
To represent face shape and expression together, multilinear
models [29], [30] are developed with aligned face data, and are
able to fit the input of arbitrary users with arbitrary expres-
sions. Recently, Li et al. [22] present a FLAMEmodel for mod-
eling the full head and neck region with global blendshapes
and corrective pose-dependent blendshapes. Physically-based
models construct an anatomic structure of a human face and
generate facial animations with physical simulation. Ichim et
al. [31] propose a volumetric model to handle passive motions
on faces. An extended version [32] explores more physics and
can be used for both reconstruction and animation. A number
of methods have been presented to construct personalized
blendshapes of a specific user. Ichim et al. [33] use multi-view
images and an expression sequence to reconstruct user’s face
rig. Garrido et al. [34] achieve a similar goal with a monocular
sequence only. Recently, Hu et al. [7] use a single image to
build the user’s face rig with vivid face and hair. Our method
is different from the aforementioned methods that focus on
the face region, as it is designed for modeling neck animation.

2.3 Neck modeling and animation
There have been a few methods introduced for modeling the
neck and the upper body. Lee et al. [19] propose a biomedical
model to model the anatomical structure of the neck-head and
a control model to generate neck motions. Later, they extend
the biomedical model to the upper body and combine the
model with FEM simulation of soft tissues for generating body
animations [21]. Bender et al. [20] propose a physical model for
neck deformation with more deformation details and fast sim-
ulation speed. These methods can generate physically correct
neck animation, but the physically based models proposed

in these methods are designed manually for specific subjects,
making it difficult to be used in other identities. Apart from
that, it is also unclear how to integrate these techniques with
other data-driven facial animation methods for generating
realistic and consistent face and neck animation. All these
methods mainly focus on neck motions driven by head and
shoulder motions and ignore the larynx motion and detailed
neck deformation resulting from speech.

Recently, Li et al. [22] propose a data-driven FLAME
model to represent full head and neck animation using a
set of blendshapes. Since the modeling of face and neck
animation uses the same set of blendshapes, their method can
automatically generate consistent face and neck deformation
for specific facial expressions and head poses. However, the
FLAME model also ignores the neck deformation caused
by larynx and vocal tract and thus cannot model the neck
deformation resulting from speech and swallowing. We expand
the FLAME model by including a novel skinning scheme for
neck deformation caused by larynx motion and corrective
blendshapes for detailed neck deformation caused by speech.
We also develop a new optimization algorithm to construct
our new model from the captured neck animation dataset and
a speech animation model for generating the neck animations
from speech.

2.4 Speech animation
A number of techniques have been developed for generating
facial animations from speech. Liu et al. [35] combine both
audio and video input for real-time 3D facial animation,
in which a user-independent phoneme feature sequence is
extracted from speech audio input via a deep-learning network
and then used for finding the corresponding 3D lip motions
from a pre-captured database. Taylor et al. [36] apply a deep
learning technique to directly regress mouth motions from the
audio signal. Karras et al. [37] further consider the correlation
between speech and emotions to produce more vivid facial
animations. Aside from 3D facial motion sequences, 2D videos
are also been edited with speech signal in a data-driven man-
ner [38]. In contrast with these methods that generate facial
animation from speech input, our method develops the neck
animation from speech. The results of our experiments show
that there are strong correlations between the speech signal
and the neck deformation, and that the potential combination
of neck and mouth regions may generate more vivid speech-
driven animations in the future.

3 Model formulation
In this section, we illustrate our proposed novel face model.
The latest FLAME model [22] works well in representing
identity, poses and expression variations of a human head.
However, it does not deal with the rich deformation of the
neck and larynx. Our model expands the FLAME model with
the inclusion of speech-related correctives, which consist of a
larynx model designed based on our anatomical observation
and a speech-related blendshape model .

We create our model based on the FLAME topology. Since
its original resolution is not high enough to reproduce the
variation, we apply the butterfly subdivision [39] on the face
and front neck area. The eyeballs and corresponding joints
are eliminated as they are not related to the main focus of
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this paper. Therefore, our model has a topology of N = 13232
vertices, and K = 2 joints (neck and jaw).

3.1 Larynx model

In anatomy, it is known that the larynx can slide beneath
the neck skin and push the skin to deform accordingly. Such
a motion is quite different from commonly modeled facial
deformation, where there are fixed correspondences between
vertices and geometric features. There are two important
observations about the larynx motion: firstly, the bump driven
by the larynx is moving as a whole, and the shape of the
bump is basically the same at different larynx positions.
Secondly, the correspondence between the larynx and the skin
is varying. Based on these observations, we decouple a neutral
shape T into a larynx-removed virtual base shape T0, and its
larynx shape represented as an offset map in the UV space. To
make sure the 3D larynx shape is preserved when the weight
map slides in the UV space, an isometric parameterization is
required when building the larynx model. Specifically, we crop
out the mesh in the front of the neck region and use SLIM [40]
with isometric distortion optimization to generate the UV
map for the larynx model. Since the deformation is caused
by the underneath larynx shape, and should be independent
to the surface normal of the skin, we apply a 1D-per-pixel
weight mapWl and a constant 3D unit vector ts to represent
the larynx shape. In this way, the neutral shape T can be
formulated as:

T = T0 +Wl · ts, (1)

where · calculates a 3D vector for each vertex i by Wi
l ts, and

Wi
l denotes the value of the corresponding pixel of vertex i on
Wl.

To enable the sliding motion, a larynx motion factor td
is applied to the larynx weight map, causing all the nonzero
values of Wl to translate simultaneously in the UV space. It
means that the weight value on pixel u will move to pixel u +
td. Thus, the overall delta shape of the larynx is maintained,
and the corresponding surface vertices are changed due to the
sliding, which fits our physical observation. The larynx motion
vector td is represented as a 2D vector in the UV space, but
naturally the larynx should not slide horizontally. Therefore,
we enforce the x-coordinate of td to be zero, and only solve the
y-coordinate, which will be denoted as a scalar τ , so the final
sliding larynx weight map will be denoted as Wl(τ). We also
observe that the larynx sliding direction is not strictly parallel
to the surface of T0, introducing some slight variations on the
larynx shape. In most cases, the neck is slightly leans forward
at the rest pose; therefore, the magnitude of the protrusion
onto the skin caused by the larynx tends to be larger when
it drops down, and smaller when it raises. To approximate
this effect, we further apply a scalar α on ts. A more intuitive
demonstration about the relationship of τ and α will be shown
in Section 7.2. Putting together, a larynx-sliding mesh at rest
pose is expressed as:

T = T0 +Wl(τ) · α ts (2)

With different τ and α, the larynx shape will deform accord-
ingly, as is shown in Figure 1.

τ = −20; α = 1 τ = 12; α = 1 τ = 0; α = 0.3 τ = 0; α = 1.7

Fig. 1: The effects of larynx coefficients. The color-coded
map in the second row is the larynx weight map Wl(τ) · α,
synthesized with τ and α values from below.

3.2 Blendshape correctives

Pose and expression blendshapes The pose blend-
shapes BP (θ;P) and the expression blendshapes BE(ψ; E)
in our neck model are formulated with consistent notations
and representations as in [22]. Notice that even though the
formulations are the same with those in FLAME, we will
fine-tune these blendshapes using our data to include more
detailed motion in our model, especially on the neck region.

Speech blendshapes The expression blendshapes can
model some neck deformation caused by different mouth
motions, however, the neck may have additional deformation
at different states of phonation because the vocal tract keeps
configuring itself to pronounce different sounds. During speak-
ing, the neck deformation may behave differently compared to
non-speaking scenarios. Besides the mentioned larynx model,
we also propose to train a set of speech-related blendshapes to
model the additional variation of the neck. Like other blend-
shape correctives, the speech blendshapes are also orthogonal
basis of displacements:

BN (φ;N ) =
|φ|∑
n=1

φnNn (3)

where φ = [φ1, . . . , φ|φ|]> denotes the speech blendshape
coefficients, and N = [N1, . . . ,N|φ|] ∈ R3N×|φ| denotes the
speech blendshape basis.

3.3 Linear blend skinning
With all correctives and larynx shape added, the shape of any
specific identity at rest pose can be expressed as:

M(θ,ψ,φ, τ, α,Wl) =T0 +BP (θ;P) +BE(ψ; E)
+BN (φ;N ) +Wl(τ) · α ts (4)

in which user-specific base shape T0 is modeled using shape
blendshapes the same way as FLAME. For convenience, we
use M to indicate a general mesh, and T to indicate a mesh
that could be modeled purely by the larynx model, but not
the pose, expression and speech blendshapes. The following
descriptions will follow this rule.

As we also use standard Linear Blend Skinning [41] func-
tionW (M,J,θ,W) to rotate the rest pose mesh on the joints
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Fig. 2: Data capture. Left: The multi-view setup. Middle: The
performer with tattoos attached. Right: A reconstructed mesh
for the input frame.

J as FLAME does, we directly use the joint position J and
skinning weightW of FLAME. The final model is as follows:

M′(θ,ψ,φ, τ, α,Wl) = W (M(θ,ψ,φ, τ, α,Wl),J,θ,W)
(5)

4 Data capture
Our model aims to represent more detailed motion on the neck
region; therefore, we need high-fidelity 3D mesh sequences as
training data. In this section, we will discuss how we acquire
the training data.

4.1 Capture setup
We set up a multi-view capture system that consists of C = 16
GoPro cameras, each recording a 1080p video at 60 fps. To
start and stop the recording, all cameras are connected to one
remote controller throughWiFi. Three diffuse lighting sources
are carefully arranged to make sure the face and the neck are
properly lit with least shadows. The cameras are calibrated at
the beginning of each capture, and a clapperboard is used for
manual synchronization in post-processing.

To ensure a good temporal correspondence, we attach
some tattoo textures to the cheek and neck of each actor,
which provide clues for visual tracking. After attaching the
tattoos, we scan a high-quality template mesh of the actor’s
neutral expression at rest pose using a handheld Artec Eva
scanner. The scan mesh will be deformed to fit the multi-view
information to generate deformation at each frame.

During the recording, we ask the users to perform three
kinds of motions: pure pose changes to train the pose blend-
shapes, pure expression changes to train the expression blend-
shapes and pure speech changes to train the larynx model and
the speech blendshapes. An illustration of our data capture is
shown in Figure 2.

4.2 Data reconstruction
After the recording procedure, the scan template mesh will
be resampled to the same topology as in our model, with N
vertices, and will be denoted as M∗. After synchronization, we
have image sequences from the C cameras: {Itc}C−1

c=0 , and the
calibrated intrinsic and extrinsic parameters for each camera:
{πc,Rc, tc}C−1

c=0 . We first reconstruct a 3D point cloud {pti}
for each frame t using PMVS [42] algorithm. The point cloud
will be used to deform the template mesh M∗.

For each frame t, we need to find the correspondence
between the PMVS point cloud and the template mesh. For
simplicity, we omit the superscript t in the following notations.

Fig. 3: Captured subjects. The blue ones are used for model
training while the red ones are used for fitting tests.

Firstly the initial mesh M̃ is rendered to each view with
its texture, generating images {Ĩc}C−1

c=0 . Dense optical flow
fc : Ic 7→ Ĩc is estimated at each view [43]. After that, each pi
will be projected to the view ci whose view angle is the closest
to the normal of the point, and then the corresponding pixel
is decided using the optical flow of the view ci:

ũi = fci (πci (Rcipi + tci )) (6)

By inversely rendering ũi, we can directly get the {pi}’s
corresponding point vi on the template mesh.

For each frame, we use the result of the previous frame as
M̃ to fit the current point cloud. The fitting result serves as
the initial guess for the next iteration. For the first frame of a
sequence, M̃ is obtained by rigidly deforming M∗ with some
manually selected feature correspondences on faces. Given
the dense correspondences obtained by the aforementioned
methods, we deform the template mesh out of the FLAME
space by the method introduced in [44].

The texture of the template mesh is initialized by the scan
of the first frame. After the fitting of the first frame, the
texture is updated from all the cameras and will be fixed for all
the rest frames. Specifically, each pixel contributes to the color
of its corresponding vertex, and the weight of the contribution
is decided by the dot product of the viewing direction and the
normal direction of the vertex.

As a result, our reconstructed data contains 9 subjects,
each with three datasets, the pose, expression and speech
datasets, which usually contain 3000, 3000 and 12,000 frames,
respectively. For each frame, we have 16 images and a recon-
structed mesh model. For the 9 captured subjects, we utilize
the animations of 5 subjects for training, while animations of
the remaining 4 subjects are used for testing. Figure 3 shows
all the captured subjects.

5 Model training
In this section, we will train our model with our recorded
data. Based on the motions of the actor, we classify all
the recorded data into three datasets: pose dataset Dpose,
expression dataset Dexp and speech dataset Dspeech. For sim-
plicity, in the following formulations, we assume the data is
captured from one actor, unless stated otherwise. However,
all the algorithms can be extended to multi-person data in a
straightforward way, as we actually do in our experiments.
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5.1 Refinement of pose and expression blendshapes
For Dpose, we assume there is no deformation caused by
expression and speech, and for Dexp, we assume that the
actor is performing silently without larynx motion. As a
consequence, we can use Dpose and Dexp to train the pose and
expression blendshapes with the methods introduced in [22].
We train the corrective pose blendshape with 5 subjects only
and we found the result model has good generality. To train
the corrective blendshape for expression, we randomly sample
10 identities from the FLAME identity space and generate
their neck deformation sequences by following the deformation
sequence of 5 subjects. Since details are lacking in the neck
deformation generated by FLAME model, we then transfer
the neck deformation details from the 5 subjects to the 10
FLAME identities via deformation transfer [45]. The pose and
expression blendshapes generated in our method consist of
both face and neck regions, and can be regarded as a refined
version of FLAME blendshapes. In the experimental results,
we will show the refined blendshapes outperform the original
FLAME blendshapes in modeling the deformation, especially
on the neck regions.

5.2 Speech model training
Once the pose and expression blendshape are refined, we
train the speech related blendshapes and larynx model from
the speech dataset Dspeech. Before the training, for each
mesh model, we first compensate the deformation caused by
pose and expression by estimating the pose and expression
coefficients. So in this subsection, a 3D mesh M has no pose
and expression-related deformation, and can be represented
purely by our speech model as

{M |M = T0 +BN (φ;N ) +Wl(τ) · α ts}. (7)

Here, N is a set of corrective blendshapes for modeling neck
deformation driven by speech, T0,Wl, ts construct the larynx
model, and {αi}, {τi}, {φi} are model parameters for each 3D
mesh.

We train the speech model by minimizing the difference
between the captured mesh and the mesh reconstructed by our
model, as shown in Algorithm 1. First, we manually separate
the neck area into the larynx region L(T) and the non-larynx
regionN(T) as in Figure 4. After model initialization, we then
optimize the model T0,Wl, ts,N and estimate the coefficients
{αi}, {τi}, {φi} for each frame in an iterative way. To this
end, we further divide all unknowns into four groups: the lar-
ynx model T0,Wl, ts, the larynx model coefficients: τ, α; the
speech blendshape basisN , and the blendshape coefficients φ.
In each optimization step, we update each group of unknowns
with the other three fixed. The algorithm is stopped after a
predefined number of iterations. In the subsequent parts of
this subsection, we first describe each step of our training
algorithm and then discuss the implementation details of the
algorithm.

Initialization In the initialization stage, we calculate
the initial T0,Wl, ts from a mesh T̂ recorded with neutral
pose, neutral expression and no speech. Since τ = 0 and
α = 1 in this situation, the formulation for T̂ is reduced
to T̂ = T0 + Wl · ts. The best guess of the base mesh
T0 is to remove the bump at the larynx region. Using the
predefined region masks L(T) and N(T), we initialize T0 by

Algorithm 1: Algorithm for speech model training
Data: Speech-related mesh at each frame {Mj} and

neutral mesh T̂
Result: Model parameters T0,Wl, ts,N ; Per-frame

coefficients {αj}, {τj}, {φj}
begin

Initialize T0 (Equation 8);
Initialize ts (Equation 9);
InitializeWl (Equation 10);
Initialize |N | = 2, and update blendshapes N ;
Calculate blendshape coefficients {φi};
while |N | < threshold and max iteration number
not reached do

Update larynx model T0,Wl, ts;
Update larynx coefficients {τi}, {αi};
|N |+ = 2, and update blendshapes N ;
Update blendshape coefficients {φi};

end
end

(a) Larynx region (b) Non-larynx region (c) Face region

Fig. 4: The masks used in our algorithm.

reconstructing the larynx region using the boundary condition
and zero Laplacian constraints:

T0 = arg min
T0

‖B
(
L(T0)

)
−B

(
L(T̂)

)
‖2 + λ‖L · L(T0)‖2

(8)
s.t. N(T0) = N(T̂)

where B(·) selects the one-ring boundary vertices of a given
mesh region and L is the Laplacian operator. An illustration
of the reconstructed base mesh is shown in Figure 5. And the
direction of ts is initialized with the average direction of the
offsets between T̂ and T0:

ts =
∑
i∈L

T̂i −Ti
0

‖T̂i −Ti
0‖

(9)

where T̂i is the i-th vertex on the larynx region of mesh T̂. To
ensure the actual offset is along the direction of ts, we shoot
each vertex on L(T̂) along −ts direction, and the intersection
point on T0 becomes the new position of the corresponding
vertex of T0. And by definition, the initial larynx weight map
can be calculated as

Wi
l = ‖T̂i −Ti

0‖. (10)

The speech blendshapes are initialized to zero in our method,
and so are the corresponding coefficients.
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Fig. 5: The neutral mesh and its corresponding base mesh
calculated by Equation 8.

Larynx coefficient estimation With known
BN (φ;N ), we use Tj to denote a mesh purely represented by
the larynx shape, and it can be represented by Mj as

{Tj | Tj = Mj −BN (φj ;N )}. (11)

The larynx translation for each frame τj is estimated
by finding the translation parameter τ that maximizes the
correlation between the larynx offset that is extracted from
the captured 3D mesh by Tj −T0 and the translated weight
mapWl(τ) · ts:

τj = arg max
τ

NCC
(
Tj −T0, Wl(τ) · ts

)
, (12)

where NCC measures the Normalized Cross-Correction
(NCC) between two offset maps. We use the NCC because it
is robust to the shape difference of two offset maps caused by
the unoptimized larynx model in the current iteration. To find
the best τ , we slide the initial offset map vertically with each
possible τ value and find the one that generates the maximal
NCC value.

After τj is determined, the scalar αj for each frame is
calculated by solving the following least-squares optimization:

αj = arg min
α

Dist
(
Tj −T0, Wl(τj) · α ts

)
, (13)

where Dist(W1,W2) refers to the L2 distance of two offset
maps that are computed by the sum of L2 distance of dis-
placements on each offset map pixel.

Blendshape update In this step, all the recorded
meshes Mj are used to re-estimate the speech blendshape.
We first calculate all the residual of blendshape correctives by
Mj − (T0 +Wl(τj) ·αj ts). The residual vectors of each frame
j are stacked together to form a residual matrix, and Singular
Value Decomposition (SVD) is performed to get an orthogonal
representation. Given the pre-assigned blendshape dimensions
|N |, the left |N | columns of the left orthogonal matrix in SVD
(which is commonly noted as the U matrix) are extracted
as the new speech blendshape N . The capacity of N is set
to 2 in the initialization stage, and is increased by 2 at every
iteration. In this way, the high-frequency component of larynx
motion is avoided from being captured by the blendshapes.

Larynx model update First we use Equation 11 again
to get all Tj . Then we update the base mesh T0 and the
weight map Wl together, given the current estimation of ts,
τj and αj :

{T0,Wl} = arg min
T0,Wl

Edata + λ1ELap + λ2Ereg + λ3Ebdry

(14)
s.t. N(T0) = N(T)

The data term is

Edata =
∑
j

‖T0 +Wl(τj) · αj ts −Tj‖2. (15)

The Laplacian constraints are

ELap = ‖L · L(T0)‖2. (16)

The regularization constraints are defined as

Ereg = λT ‖T0 −T′0‖2 + λW ‖Wl −W ′l‖2 (17)

where T′0 and W ′l are the respective results of the previous
iteration. And the boundary constraints are

Ebdry = ‖B
(
L(T0)

)
−B

(
L(T)

)
‖2. (18)

Then ts can be estimated in a least square manner:

ts = arg min
ts

∑
j

‖Mj−T0−BN (φj ;N )−Wl(τj)·αjts‖. (19)

Blendshape coefficient estimation Again, we calcu-
late the blendshape correctives by Mj − (T0 +Wl(τj) ·αj ts),
and perform blendshape fitting to calculate φj for each
recorded mesh:

φj = arg min
φj

‖Mj −T0−Wl(τj) ·αj ts−BN (φj ;N )‖. (20)

Details The speech blendshapes and the larynx cor-
rectives will both deform the base mesh T0. Therefore the
blendshapes and the larynx model should be optimized to-
gether. However, this is not easy to achieve. In our iterative
method, we first impose the speech blendshape to be very
low dimensions, set to 2 for the first iteration. After each
iteration, the dimension ofN will increase by 2. Setting a max-
imum iteration number controls the dimension of the speech
blendshapes. In our experiments we enforce 10 iterations and
therefore get 20 basis for the speech blendshape.

Aside from building our neck model, the methods in this
subsection are also used in fitting input data with the trained
neck model. For fitting, we only need to iteratively perform
the larynx coefficient estimation step and the blendshape
coefficient estimation step for a few times. Since all the
optimizations are linear with a small number of unknowns,
our model is suitable for real-time fitting tasks.

6 Speech model regression
Although the neck deformation and the larynx motion are
modeled using our technique, it is not intuitive for animators
to directly control the coefficients to generate animation. In
this section, we propose a regression method to predict the
coefficients of the speech-related model from the speech audio
input.

6.1 Feature consideration
In our model, the coefficients to be predicted can be grouped
into two types: the speech blendshape coefficients φ which
represent the global neck deformation caused by the motion
of the vocal tract, and the larynx coefficients τ and α, which
represent the local larynx motion driven by the throat and
vocal folds. Therefore, the blendshape coefficients should be
related to the content of the speech, while the larynx position
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is considered to be highly related to the pitch and volume of
the phonation. This decoupling fits the idea of the source-
filter model, which is widely-used in speech synthesis and
speech analysis, and recently shows its promising applications
in speech-driven animations [37]. In the source-filter model,
the speech wave is modeled as an excitation signal from vocal
folds passed from linear filters of vocal tracts. By applying
Linear Predictive Coding (LPC) analysis, the source signal
can be separated from the filter response (the formants).

Similar to [37], we use the standard LPC formulation for
audio feature extraction. For the audio preprocessing and
configuration of audio frame length, we also follow the settings
of [37]. Details about calculating the audio feature can be
found in the result section. To sum up, for each audio frame,
we have filter features a ∈ R32 and source signal features
b = [b0, b1, b2]> ∈ R3. Takeing the temporal information into
account, we use a temporal window of 64 audio frames to form
a feature vector that corresponds to a visual frame.

6.2 Regression
The regressors we are expecting are formulated as the blend-
shape coefficient regressor

Rb : ā 7→ φ (21)

where ā = [a>t−32, . . . ,a>t , . . . ,a>t+31]> ∈ R2048 is the filter
feature vector, and the larynx coefficient regressors

Rτ : b̄ 7→ τ (22)

and
Rα : b̄ 7→ α (23)

where b̄ = [b>t−32, . . . ,b>t , . . . ,b>t+31]> ∈ R192 is the source
feature vector.

Since the dimensionality of the result is quite low, we use
linear regression to model the mapping.

Rb(ā) = ā> ·Rb (24)

and the regression matrix Rb is estimated by least square
method:

Rb = arg min
R

∑
i

‖ā>i ·R − φi‖2 + λ‖R‖2
F (25)

The methods of estimating Rτ and Rα are similar, except
that a bias is also estimated to balance the mean larynx
position and scale.

7 Experimental results
In this section, we first formulate some experimental details.
Then we present the comparison to FLAME, the current
state-of-the-art parametric face model, to demonstrate the
benefit in generating more realistic motion in neck regions.
Following that, we add some experiments related to the model
parameters. Finally, we present the power of our speech-
related regressors, which generate reasonable neck motions
from speech input. The experiments show that the regressors
are not sensitive to users, indicating the generality of our
techniques in the application of speech-driven facial anima-
tion. More results of our technique can be found in the
accompanying video.

Fig. 6: Comparison with FLAME on a new user

Audio feature We use filter features for the blendshape
coefficient regression, and signal features for the larynx regres-
sion. For the LPC formants, we use a 32-order all-pole filter.
After estimating the filter responses, the inverse filtering is
performed to reveal the signal. We use Prony’s Method to
calculate the filter coefficients a and the gain b0 of the signal.
Furthermore, the pitch and the voiced status of the signal
are inferred using auto-correlation methods. The estimation
of pitch b1 is constrained to 80 Hz to 350 Hz which is a widely-
adopted range of the fundamental frequency of human voice,
and is normalized to the range of [0, 1]. To disambiguate the
unvoiced frames and the 80 Hz pitch voiced frames, the voiced
flag b2 is used, which is set to 1 if it is a voiced frame and 0
otherwise.

Numbers The original FLAME model has 18 pose
blendshapes and 100 expression blendshapes. To be com-
parable, we set the dimensions of our pose and expression
blendshapes to be the same with those of FLAME. Our speech
blendshapes have a dimension of 20. Our larynx model only
has 2 parameters but performs well in modeling the larynx
motions. The training process takes about 3 hours. However,
this only needs to be performed once to build the model.
The fitting of facial landmarks and 3D dense input can be
performed in a real-time manner because only linear equations
with a limited number of unknowns are needed to be solved.
The speech-driven regression is also very fast due to the
linearity and the dimensionality.

7.1 Comparison to FLAME
We compare our model to the original FLAME model by
fitting a 3D speech sequence of a new user, which shows that
our model performs better in reproducing the rich variations
in neck regions. Figure 6 presents some keyframes of the
experiment. It is worth mentioning that the fitting errors in
the facial part also decrease due to the refinement of pose and
expression blendshapes (Section 5.1), which affect the whole
mesh. More comparisons are shown in our video. The error
curves are shown in Figure 7.
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Fig. 7: Fitting errors of our full model and the original
FLAMEmodel. (measured by average 3D errors of neck region
vertices)

TABLE 1: Error drops of each component validation tests on
all 4 subjects (unit: mm), in which test #1 is the subject
demonstrated in the paper.

Test ID Pose Fitting Exp Fitting Speech Fitting

#1 0.23 1.57 0.26
#2 0.46 1.25 0.25
#3 0.32 1.42 0.28
#4 0.39 1.21 0.19

7.2 Validation of model components and generality
To demonstrate that each component of our model contributes
to the lower fitting error, we calculate the error drop at each
fitting stage, which is shown as Row #1 in Table 1. The fitting
error is computed as the average 3D distance differences in
the neck region, the same way as in the previous subsection.
The values in Table 1 are error drops, calculated by the error
of FLAME minus that of our model. Additionally, we repeat
the experiments on all the other three test subjects. The error
drops of each component on each subject are shown in Table 1.
We can see that similar results can be seen on different test
cases, which indicates that our model generalizes well.

Speech blendshape coefficients In Figure 8, we show
a plot of time varying values of speech coefficients in a speak-
ing sequence. For clarity reasons, we only show the first three
dimensions. Rich variations exist in the coefficient values. In
the highlighted regions, the speaker is between sentences and
the expressions are nearly neutral. The coefficient values tend
to be near zero. However, small variations still exist because
of the influence of the context. This is often known as the
coarticulation effect.

Relationship between τ and α We introduce the
factor α to compensate the scaling variation occurred when
the larynx sliding direction in 3D is not parallel to the neck
skin surface. To demonstrate this, we plot the values of τ and
α of each frame from a fitting sequence, as shown in Figure. 9.
In the first part of the sequence (frame 0 – 150), the actor is
performing the swallowing motion at rest pose. We can see
that when τ drops, which means the larynx is raising to a
higher position, α tends to decrease, scaling down the overall
shape of the bump, and vice versa. Such a relationship agrees
with our observations in real cases, because naturally the neck
is slightly leaning forward at rest pose, and when the larynx
goes up, it is a little farther away from the skin. However, this
is not necessarily the case in non-rest poses. This can be seen

Fig. 8: Values for the first 3 dimensions of speech blendshape
coefficients in a fitting sequence. The highlighted regions mark
the near-neutral expressions when the speaker rests between
sentences.
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Fig. 9: Values for τ and α in a fitting sequence. The unit of τ
is pixel distance in the UV space, and smaller τ corresponds
to vertically higher layrnx position.

in the latter half of the plot (after frame 150), when the actor
is rotating his head drastically. In such cases, the larynx shape
may become more obvious even when it is raised, for example
when the head is being thrown back, stretching the anterior
neck skin and pushing the trachea forward.

7.3 Speech-driven animation
The speech-driven regressor enables the generation of model
coefficients from the extracted audio features. We built two
types of regressors: user-specific regressors, applied to the
training user only, and a generic regressor, which provides
speech driven animation for new users.

User-specific speech animation We trained three
user-specific regressors. The training and testing configura-
tions are listed in Table 2. To synthesize the result meshes,
pose and expression coefficients are generated by fitting the
input. The coefficients of the speech model, including the
speech-related blendshape coefficients and the larynx coeffi-
cients, are predicted by the regressors with the corresponding
audio signal. Figure 11 shows some keyframes of the regression
results of one user. We can see that the deformations in these
keyframes are consistent with those of the input.

Generic speech animation We trained two generic
regressors for male and female respectively. Each with the
data of three users. Since the larynx shape is not obvious for
most females, only the regressor for blendshape coefficients is
trained for the female, as shown in Figure 10. Although the
regression model does not make a big difference visually, the
quantitative errors are still reduced significantly. Figure 12
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Fig. 10: Results of speech-driven animation of a female generic
model

shows the prediction of the motion of a new user using the
male generic model. Obviously, the generic model on a new
user does not work as well as the specific model on this
user, but the former still generates motion consistent with the
input. So, in general, our technique is not sensitive to users
and can generate plausible results.

7.4 Applications
The proposed model decouples the deformation of the face
and the neck into several sets of user-independent coefficients,
enabling the application of speech-driven and expression-
driven animation. Also, it has the potential to achieve user-
friendly neck motion editing, as our larynx model is carefully
designed following the anatomical mechanism, and thus could
be easily understood and used by animators.

Neck animation generation There are many existing
ways to generate facial animations without expensive data
capture, for example the image-based tracking and blend-
shape keyframing. However, usually, there are only few tex-
ture features on the neck for image tracking, and there are no
well-defined semantics for neck blendshapes. With our model
and regressor, it is easier to track and animate neck animation
based on facial animation. Figure 13 shows the examples of the
face-driven neck animation.

Swallowing modeling Swallowing is one of the most
important types of neck and larynx motion. Although swal-
lowing is not related to speech, our model can regenerate the
motion given the correct coefficients. Figure 14 shows our
results of modeling swallowing, in which the coefficients are
generated from fitting the 3D reconstruction data. Our model
compresses the data needed to reproduce the swallowing
motion, and also introduces easy ways to manipulate.

Neck motion editing Since our model parameterizes
the neck shape and motion using decoupled components and
coefficients, motion editing becomes as easy as simply ad-
justing the coefficients. The bottom row of Figure 14 shows

a further editing of the neck motion which exaggerates the
larynx shape and motion range.

8 Limitations
Our model can generate plausible neck animations for differ-
ent users. However, since the number of subjects we currently
captured is quite limited, it may not be representative enough
for a large and diverse population. This can be improved by
capturing more subjects. In our regression method, we are
modeling the user-independent neck motion. But there may be
some subtle yet special motion characteristics among different
users. Such user-specific characteristics are not represented
in the model. The training data of our method is obtained
by nonrigid motion tracking, which is unable to reconstruct
high-frequency motion details, leading to the lack of such
details in our results. In our model, we simplify the variation
on the shape of the larynx and assume the overall shape
is maintained up to a global scalar α during sliding. This
reduces computational complexity while ensuring good result
quality. It might be possible to build a more accurate model
with more informative data like dynamic MRI. We do not
model secondary motion. It would be interesting to do so by
incorporating physically based simulation.

9 Conclusion
This paper proposed a novel dynamic neck model for 3D
neck reconstruction and animation. The model combined local
skinning and global blendshape representations to achieve
user-independent neck motion modeling. The paper also in-
troduced a dataset with 3D head motion sequences of different
identities, poses, expressions and speech, and a comprehensive
technique to build the dynamic model from the dataset. We
will make the dataset available online for research use. Con-
sidering the pronunciation mechanism, the paper trained two
regressors with different audio features to produce plausible
neck animations from speech data. We believe this work
has made a step further to achieve full head modeling and
animation.
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Fig. 11: Results of speech-driven animation a user specific model. (τ , α) values for each row are listed on the right.

Fig. 12: Results of speech-driven animation of a male generic model. (τ , α) values for each row are listed on the right.
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Fig. 13: Results of face-driven animation. 1st row: input video with facial landmarks; 2nd and 3rd rows: obtained face and neck
animation. (τ , α) values for each column are listed on the bottom.

Fig. 14: Modeling and editing of swallowing motion. (τ , α) values for each column’s modeling results are listed on the bottom.
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