
SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

DTexFusion: Dynamic Texture Fusion
using a Consumer RGBD Sensor

Chengwei Zheng and Feng Xu

Abstract—In addition to 3D geometry, accurate representation of texture is important when digitizing real objects in virtual worlds.
Based on a single consumer RGBD sensor, accurate texture representation for static objects can be realized by fusing multi-frame
information; however, extending the process to dynamic objects, which typically have time-varying textures, is difficult. Thus, to address
this problem, we propose a compact keyframe-based representation that decouples a dynamic texture into a basic static texture and a
set of multiplicative changing maps. With this representation, the proposed method first aligns textures recorded from multiple
keyframes with the reconstructed dynamic geometry of the object. Errors in the alignment and geometry are then compensated in an
innovative iterative linear optimization framework. With the reconstructed texture, we then employ a scheme to synthesize the dynamic
object from arbitrary viewpoints. By considering temporal and local pose similarities jointly, dynamic textures in all keyframes are fused
to guarantee high-quality image generation. Experimental results demonstrate that the proposed method handles various dynamic
objects, including faces, bodies, cloth, and toys. In addition, qualitative and quantitative comparisons demonstrate that the proposed
method outperforms state-of-the-art solutions.

Index Terms—texture reconstruction, dynamic texture, novel view synthesis, 3D dynamic reconstruction.
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1 INTRODUCTION

W ITH the development of depth-sensing techniques,
3D reconstruction has become widespread in profes-

sional applications and end users’ daily lives. As an increas-
ing number of RGBD sensors are integrated into consumer
equipment, such as tablets and smartphones, end users are
able to record, edit, animate, and play with real 3D objects
for various applications, including 3D measurement, 3D
design, video games, virtual reality, and augmented reality.
The acquisition of 3D geometry is critical for this purpose,
and many techniques have achieved high performance in
the reconstruction of either static objects [1], dynamic objects
[2], or both [3].

However, without appearance, the reconstruction is not
a complete reconstruction of the real world. Several recent
studies have noted this and investigated appearance capture
with consumer RGBD sensors for daily applications. How-
ever, there are several difficulties in capturing appearance.
First, the lighting conditions are not controlled or pre-
calibrated. Second, the underlying geometry is not accurate,
as it is reconstructed from noisy depth input recorded by
consumer sensors. Lastly, color images contain distortions,
and the camera intrinsic and extrinsic parameters cannot
be accurately estimated. To overcome these difficulties, pre-
vious works [4], [5] warped recorded multi-view images
and synthesized the global texture map of a reconstructed
3D object. The texture map representation did not need to
decouple lighting from object appearance, and the warping
compensated for errors in depth and color input. However,
these techniques use multi-view images to generate one
static texture map, and it remains unclear how to handle
dynamic objects with time-varying texture.
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In this paper, we first propose a dynamic texture map
representation. Following previous studies [4], [5], we base
our technique on a per-vertex texture map, as it is simple
and compatible with most animation pipelines. In modeling
a dynamic object, we observe that the texture of the object
in a particular pose may change in intensity but usually not
in color tone; thus, it can be approximated by a basic map
with different multiplicative changing maps. In addition, we
observe that different changing maps, which correspond to
different possible poses, actually lie in a low-dimensional
space, and thus, several key changing maps can model al-
most all the texture variations in a sequence. Consequently,
we propose a compact representation containing a basic
three-channel texture map and several one-channel multi-
plicative changing maps. The formulation can be expressed
as follows:

I(x) = M(x) ◦

(
K∑
i=1

βi(x)Di(x)

)
, (1)

where I is the synthesized texture map of an object in a
particular pose, M is the basic texture map, Di and βi are
the ith multiplicative changing map and its corresponding
weight map, respectively, and K is the number of key
changing maps for the motion sequence. x denotes a vertex
of the object. ◦ denotes element-wise multiplication and
is ignored in the following equations for simplicity. Note
that with our representation, texture editing can be easily
performed by simply changing the basic map M , which is
demonstrated in Section 5.4.

Based on the representation, we further propose a
method to reconstruct M,D1, ..., DK of a dynamic object
with an RGBD sequence, which includes a keyframe se-
lection strategy and a uniform map optimization method.
The former selects clear images (denoted as keyframes)
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with sufficient motion variation from the input sequence,
while the latter decouples M and Dis from the keyframes.
Given M,D1, ..., DK , we propose an optimization-based
solution to synthesize the object in the sequence from novel
viewpoints, where βi(x) for each object point is dynamically
determined by jointly considering time, pose, and visibility
information. As a consequence, we obtain complete, tem-
porally smooth video results with correct texture dynamics
of the moving object from the user-desired viewpoint. The
contributions of this technique are as follows:

• A texture representation containing a basic texture
map and several multiplicative changing maps, which
is effective for dynamic texture reconstruction and
editing.

• A two-step method consisting of keyframe selection
and map optimization to reconstruct dynamic tex-
ture from a single-view RGBD input.

• An optimization framework to synthesize videos in
novel views with correct dynamics.

2 RELATED WORK

In this paper, we focus on generating the texture map of
an object, and we discuss related techniques in this sec-
tion. We first discuss techniques for handling static objects,
followed by techniques for handling dynamic objects. In
the literature, there are also many image-based rendering
solutions [6], [7], [8]. However, as they do not generate a
global texture map attached to a geometric model to fit the
current pipelines for video games, VAR, and animation, they
are not summarized in this paper.

2.1 Static Texture Reconstruction
There are many methods for registering images to the ge-
ometry model. Semi-automatic methods proposed in [9],
[10], [11] use manually selected point correspondences to
align multiview images. The point correspondences can
also be automatically built by analyzing the 3D geometric
features of the model and the 2D features of the images [12],
[13], [14]. In addition to features, color consistency among
multiview images can also be used to align images of the
model with the diffuse assumption on the appearance [15],
[16], [17], [18]. Moreover, the mutual information between
projected 2D images of the texture model can also be used
in the registration [19], [20].

In many daily applications for end-users, the geometry
model and camera parameters have low accuracy; therefore,
providing more freedom in the registration may generate
more compelling results. Aganj et al. [21] first matched
SIFT feature points among different views and then warped
the images with thin-plate splines. Gal et al. [22] projected
each triangle in a mesh to a single-input image and then
optimized a 2D shift for each triangle. The optical flow
between image pairs has also been used to non-rigidly warp
images to obtain the final texture [23], [24]. Recently, Zhou
and Koltun [4] proposed an iterative linear optimization
method to jointly optimize camera parameters and correct
distortion, which achieved favorable results. Goldlücke et
al. [25] optimized a normal displacement map as well as the
camera parameters to obtain super-resolved texture maps.

Wu et al. [26] exploited high-dimensional BRDF information
to help align the appearance with the low-quality geometry
captured by a consumer RGBD sensor. Later, Bi et al. [5]
used patch-based matching to provide greater flexibility
in the reconstruction of the texture map, which effectively
handled challenging cases. Recently, Fu et al. [27] and Li
et al. [28] used global and local optimization to obtain a
seamless texture of a static object. Fu et al. [29] further
jointly optimized the camera poses, texture and geometry of
the reconstructed model, and color consistency between the
keyframes to recover fine-scale geometry and high-fidelity
texture. Kim et al. [30] generated a global texture for a
dynamic object; however, the texture was still static.

Other studies also allowed misalignment between the
geometry and images; however, they focused on selecting
one input image to texture a vertex of the model. A discrete
labeling problem had to be solved to avoid visible seams
in the results [31], [32], [33], [34]. Other texture compo-
sition techniques include sophisticated averaging [35] and
Poisson reconstruction [36], [37]. However, none of the
above-mentioned techniques can handle dynamic textures,
where the misalignment is much stronger, as motion is more
difficult to estimate accurately.

2.2 Dynamic Appearance Reconstruction

In addition to static objects, there are also several methods
that focus on the appearance reconstruction of dynamic
objects. Physical models can be used to reconstruct high-
quality appearance [38], [39], [40]. However, a large mul-
tiview setup with controlled lighting is usually required.
Recently, the development of deep learning techniques has
provided new opportunities to capture appearance for an-
imatable targets. Saito et al. [41] represented fine-scale tex-
ture details of human faces using mid-layer feature correla-
tions from a deep convolutional neural network. Nagano et
al. [42] used a GAN to obtain the texture of a human face for
different expressions. Lombardi et al. [43] and Wei et al. [44]
modeled face texture using a network encoder, which took
multiview images as input and generated view-dependent
textures. Wu et al. [45] reconstructed the high-quality color
texture of a specific face by deep incremental learning with
multiview inputs. Martin-Brualla et al. [46] used a deep
architecture to produce high-resolution and high-quality
images of the human body from a coarse rendering in real-
time. Furthermore, Pandey et al. [47] proposed an end-
to-end framework to synthesize free-viewpoint renderings
of humans using a single RGBD camera. Although deep
learning techniques generate high-quality results, they are
restricted to specific objects, such as human faces, and a
wide variety of objects have not yet been considered.

Some fusion methods reconstruct the appearance of
general objects [48], [49], [50]; however, these methods do
not consider the inaccuracy of the geometry and camera
parameters, which leads to blurring. Taking the inaccu-
racy into account, Du et al. [51] proposed a solution to-
ward real-time seamless texture montage build by leverag-
ing geodesics-guided diffusion and temporal texture fields.
Prada et al. [52] proposed motion graphs, which enable nat-
ural periodic motion, stochastic playback, and user-directed
animations. Tsiminaki et al. [53] generalized multiview
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Fig. 1: Pipeline of proposed framework.

appearance super-resolution research to the temporal do-
main with a per-view, per-time frame warp. Other methods
[54], [55] achieved 4D reconstruction with dynamic texture;
however, they also relied on multiview inputs. For texture
representation, PCA based additive models [56], [57], [58]
were also used to generate dynamic texture, especially for
human faces [59], [60]. Compared with these models, our
multiplicative model that encodes changes in light intensity
has clearer physical implications.

3 METHOD

Taking a monocular RGBD sequence as input, our technique
generates the dynamic texture of an object in the sequence
as well as its 3D surface geometry and motion. Our method
can be divided into three main steps (Fig. 1). First, the input
depth sequence is used to fuse the geometry and estimate
the motion of the object using an existing technique [2].
Then, we select some keyframes in the color sequence and
use them to reconstruct the dynamic texture of the object,
which can represent the dynamic shading and shadow
effects in the sequence. Finally, we synthesize high-quality
images of the moving object from arbitrary viewpoints
based on our texture representation and the reconstructed
geometry and motion.

3.1 Geometry and Motion Reconstruction
After running [2] for the input sequence, the reconstructed
object motion is applied to the fused object mesh after
subdivision to reconstruct the mesh sequence, which carries
our dynamic texture to synthesize novel high-quality image
sequences. The fused geometry is in the pose of the first
frame, called the canonical frame. The non-rigid motion
from the local deformation of the object is represented by
rotations and translations of the nodes, which are normally
distributed on the surface. Additional details on how to
generate and update the node graph can be found in [2].
It should be noted that the reconstructed 3D geometry
and motion are not very accurate; however, our texture
reconstruction compensates for the errors to achieve high-
quality image synthesis.

3.2 Dynamic Texture Reconstruction
In this subsection, we describe how to reconstruct the
dynamic texture of an object. The representation of the

dynamic texture is formulated in Section 1; thus, we must
estimate {M,D1, ..., DK} for a dynamic object from an
RGBD sequence. We propose a two-step solution, in which
we first select a set of keyframes in the RGB sequence and
then use a unified optimization to solve all the target maps.

3.2.1 Keyframe Selection

In the color sequence, we select keyframes based on both
the image clarity and object pose. The former contributes
to the quality of the final texture, while the latter helps
record dynamic information in the input sequence. Given
the latest keyframe, we consider the following ∆t frames
and calculate a score for each of them. The frame with the
highest score is selected as a new keyframe. This process
repeatedly runs until the last frame in the sequence is
considered. The score is calculated as follows:

σ(i) =
1

‖Xi‖
∑
x∈Xi

Sobel(x) + c
1

n

n∑
j=1

Lip(Nj)
2, (2)

where σ(i) is the score of frame i, and Xi is the set of pixels
in frame i that correspond to the object. Function Sobel uses
the Sobel operator to calculate the gradient magnitude of a
pixel as a measurement of clarity. n represents the number
of nodes, and Lip(Nj) indicates the Euclidean difference
between the positions of node j after non-rigid motion in
this frame, i, and the latest keyframe, p. c is a predefined
coefficient.

3.2.2 Map Optimization

With the selected keyframes Si(i = 1, ...,K), we run
our offline image-based optimization algorithm to obtain
{M,D1, ..., DK}. The basic texture map M is designed to
describe the texture of the object in the canonical pose (i.e.,
pose of the canonical frame). To solve for M , we assume
that there is a set of intermediate maps Mi, each of which
is the projection of M to the keyframe i with the pose and
camera parameters of keyframe i. As Mi originates from the
static basic texture, by combining the one-channel changing
map Di at the keyframe, we obtain a corresponding high-
quality texture image Ti = MiDi that has the correct texture
variations at this pose, as illustrated in Fig. 2. Given these
definitions, we can define the uniform energy for solving
{M,D1, ..., DK}, which contains three terms: bidirectional
similarity term, consistency term, and regularization term.
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Fig. 2: Images of two keyframes after dynamic texture
reconstruction. Column 1: S; column 2: T ; column 3: M ;
column 4: D. (Gray scale [0, 255] in D corresponds to value
[0, 2].)

First, as the reconstructed geometry, motion, and camera
parameters may contain errors, Ti should not be Si. How-
ever, as formulated in [5], Ti should have a very low value
of EBDS(Si, Ti) with Si, where the bidirectional similarity
term EBDS is defined as follows:

EBDS(S, T )=
1

L

(∑
s⊂S

min
t⊂T

dist(s, t) + α
∑
t⊂T

min
s⊂S

dist(s, t)

)
.

(3)
Here, α is a predefined constant, L is the number of pixels
in a patch, s and t can be any possible patches in images
S and T , respectively, and the function dist calculates the
sum of squared RGB differences of all the pixels in patches
s and t. Minimizing this energy function ensures that for
every patch t in the target image T , there is a similar patch
s in the source image S, and vice versa.

Thus, the first energy term is constructed by summing
EBDS of all keyframes:

E1 =

K∑
i=1

EBDS(Si, Ti). (4)

Next, as formulated previously, the basic texture image
M combined with the changing map D should be close to
the dynamic texture image T . As we have an intermediate
map Mi for each keyframe i, we can define the consistency
for each pair of keyframes, expressed as follows:

EC(Tj , Dj ,Mi) =
∑
xi

wj(yj)
(
Tj(yj)−Dj(yj)Mi(xi)

)2
,

(5)
where xi is a pixel position of keyframe i, yj is a pixel
position of keyframe j, and they correspond to the same
surface point of the object. As the motions of all frames are
solved in the first step, we can obtain these correspondences
through projecting a pixel in keyframe i back to the object,
unwarping to the canonical pose, warping to the pose of
keyframe j, and projecting to the image domain. If the
surface point corresponding to xi is not visible in another
keyframe, its term is removed. Similar to [5], the confidence

weight wj is calculated by wj = cos2 θ, where θ is the angle
between the viewing direction in keyframe j and the surface
normal.

Thus, the second energy term is formulated as follows:

E2 =
1

K

K∑
j=1

K∑
i=1

EC(Tj , Dj ,Mi). (6)

Here, we use 1
K to counteract the increased scale caused by

the second summation.
The previous two terms cannot solve the scale ambiguity

between M and D; therefore, we propose a novel regular-
ization term for this. As we assume that M is the texture
map of the object in the canonical pose, we can minimize
the following energy for regularization:

ED(Di) =
∑
xi

λi(xi)
(
Di(xi)− 1

)2
. (7)

Here, λi(xi) is determined by the local non-rigid motion
of the object point corresponding to xi, which is expressed
as λi(xi) = 1

L0i(xi)2
. L0i(xi) is the displacement of point

xi from the canonical pose to the pose of keyframe i af-
ter the non-rigid motion. Thus, if a point does not move
significantly in keyframe i compared to its position in the
canonical frame, its corresponding pixel value in Di should
be close to 1, and vice versa. This is consistent with our
assumption that D primarily describes the color change of
an object point due to its 3D motion.

Thus, the third term consists of this regularization term
for all keyframes:

E3 =

K∑
i=1

ED(Di). (8)

The energy function used in the reconstruction step can be
constructed by summing all three terms above:

E = E1 + ω2E2 + ω3E3, (9)

where ω2 and ω3 are the weights of E2 and E3, respectively.
By minimizing (9) with the method in Section 4, all the

maps Ti,Mi, Di are obtained. To obtain the basic texture M
for the fused geometry model, for each vertex, we find its
corresponding pixel in every Mj (if visible), and compute
the weighted average of their colors using the same weight
wj as in (5). We present some Mi from keyframes and the
basic texture in Fig. 3.

3.3 Image Synthesis
After the reconstruction of M,D1, ..., DK , we can use (1)
to synthesize the texture map for each pose in the input
sequence. The main problem is to determine the combina-
tion weight βi; then, the synthesized changing map, denoted
D̃, can be obtained. To solve this problem, we assume that
D̃t for the object pose in frame t should be close to some
keyframes Di. Motion and temporal similarities are used to
determine this. Here we use superscript t to represent an
ordinary frame t in the input sequence, not necessarily a
keyframe.

For temporal similarity, only the neighboring keyframes
of t are used. The closer they are in time, the more similar
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Fig. 3: Mi from each keyframe merged into the basic texture
M . Mesh parameterization is only used to display the mesh
in UV space, and is not necessary in our pipeline.

D̃t and Di should be. For a vertex vt in D̃t, we construct the
energy function as follows:

Ẽ1(vt)=stp

(
Dp(yp)− D̃t(vt)

)2
+stn

(
Dn(yn)− D̃t(vt)

)2
,

(10)
where p is the index of the previous keyframe of frame t,
while n is the index of the next keyframe. yp and yn are
pixels in keyframe p and n, respectively, both corresponding
to vertex vt. stp and stn are weights related to temporal
similarity. We set stp = x

x+y and stn = y
x+y , where x is

the number of frames between frame t and the keyframe
p, while y is number of frames between frame t and the
keyframe n.

For motion similarity, D̃t(vt) should be close to the
D values in the keyframes, which share similar non-rigid
motion for the same vertex. Thus, we define

Ẽ2(vt) =

K∑
j=1

mtj(v
t)
(
Dj(yj)− D̃t(vt)

)2
, (11)

where mtj is the motion similarity weight. We take
mtj(v

t) ∝ 1
Ltj(vt)2

, with Ltj(v
t) indicating the distance

between the positions of vertex vt after the non-rigid motion
in frame t and keyframe j. According to this, frames with
similar positions after non-rigid motion have greater motion
similarity weights at this vertex. In addition, normalization
is performed for each vertex vt to ensure that the sum of the
motion similarity weights mtj(v

t) is 1.
Given these two energy terms, each D̃t of a frame t can

be calculated by minimizing the energy function:

Ẽt =
∑
vt

Ẽ1(vt) + ω̃2Ẽ2(vt), (12)

where ω̃2 determines the combination weight of the two
terms.

4 OPTIMIZATION

In this section, we discuss how to optimize the energy
functions in (9) and (12).

4.1 Optimization for (9)

Ti, Mi, and Di for each keyframe must be optimized in this
step. We use an iterative optimization method to alternately
optimize these three types of maps in each iteration until
convergence.

Optimizing Ti. In each iteration, the optimization of Ti
follows the method in [5]. First, we run a patch search
algorithm to find every pair of patches s and t. Then, by
setting the differential value of (9) to zero, the pixel values
in T are updated as follows:

Ti(xi) =

1
L

U∑
u=1

su(yu) + α
L

V∑
v=1
sv(yv) + ω2

K wi(xi)
K∑
j=1

Di(xi)Mj(yj)

U
L + αV

L + ω2wi(xi)
,

(13)

where su is a patch in the source image Si, whose most
similar patch in Ti contains xi. Thus, su is obtained from
the forward pairs. As we use bidirectional pairs, we also
similarly find sv from the backward pairs. Therefore, su and
sv correspond to the two terms in (3), respectively. yu and yv
are the corresponding pixels of xi in su and sv , respectively.
Note that there can be more than one patch containing xi;
thus, there can be many paired patches in the source image,
Si. We use U and V to represent the total number of these
patches in two directions, respectively.

Optimizing Mi. Then, we update Mi by fixing all Ti and
Di. In this case, only (6) is related to the update of Mi, and
we obtain the optimal solution by setting the differential
value to zero:

Mi(xi) =

∑K
j=1 wj(yj)Dj(yj)Tj(yj)∑K

j=1 wj(yj)Dj(yj)2
. (14)

Optimizing Di. The last step in each iteration is to op-
timize Di with fixed Ti and Mi. By setting the differential
value to zero again, we obtain

Di(xi) =
ω2

K wi(xi)Ti(xi)
∑K
j=1Mj(yj) + ω3λi(xi)

ω2

K wi(xi)
∑K
j=1Mj(yj)2 + ω3λi(xi)

. (15)

It should be noted that in the optimization above if the
surface point corresponding to xi is not visible in some
keyframes, we simply remove the related terms and their
weights. In addition, we also use a multi-scale approach
similar to [5] for improved results. Ti and Mi are initialized
to Si, and Di to 1 in all pixels. Furthermore, to prevent over-
fitting, we do not optimize Di in the first several iterations
of each scale. The optimized maps during this process are
displayed in Fig. 4.
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Fig. 4: Optimization variables changed during map opti-
mization (from left to right). Row 1: T ; row 2: M ; row 3:
D.

4.2 Optimization for (12)

As Ẽ1(vt) and Ẽ2(vt) are both quadratic terms, there is a
closed-form solution for minimizing (12):

D̃t(vt) =

stpDp(yp) + stnDn(yn) + ω̃2

∑K
j=1mtj(v

t)Dj(yj)

stp + stn + ω̃2

∑K
j=1mtj(vt)

.
(16)

From (16), we observe that the D value of the surface
point vt in frame t is actually a weighted average based
on temporal and motion similarities, which is consistent
with the formulation in (1). The difference is that (16) allows
different weights for different vertices, which provides more
flexibility to synthesize the desired texture. For example,
although a vertex is not visible in frame t, its D value can
also be calculated using (16) from keyframes where this
vertex is visible and has a similar local motion to frame t.

When D̃t is obtained, we can calculate the full texture
of frame t as MD̃t. Then, we can project the texture to an
arbitrary viewpoint by the geometry of frame t to synthesize
the final output image.

5 EXPERIMENTS

In this section, we first present the performance and the
parameter settings of our technique. Then, we evaluate
several key techniques of our system. Thereafter, we present
our results on various dynamic objects, along with qual-
itative and quantitative comparisons with other methods.
Sequence results can be found in our accompanying video.

5.1 Performance and Parameters
Our system ran on a computer with a 3.40-GHz four-core
CPU, 16 GB RAM, and an NVIDIA GTX GeForce 1080
graphics card. We used Intel RealSense SR300 to record
RGBD sequences at 30 fps. Map optimization was imple-
mented on a GPU, and its running time was approximately
linear with the number of keyframes, as more than 90%
of the running time was used to find patch pairs between

Input Color Reconstruction Input Color Reconstruction

Input Color Reconstruction Input Color Reconstruction

Fig. 5: Evaluation of keyframe selection. Rows 1 and 2:
keyframes selected without considering pose information,
and reconstruction results with inputs; rows 3 and 4: our
selected keyframes and reconstruction results with inputs.

S and T . Each keyframe took approximately 1 min during
optimization. For example, we selected seven keyframes out
of an input sequence with 200 frames, which took 8 min
to run the map optimization. After reconstructing the full
sequence, image synthesis took 480 ms for each frame on a
CPU for a model with 137, 000 vertices.

Our keyframe-based texture representation usually takes
only 1–2% memory space compared to per-frame texture
representation, which saves a texture for each frame. For
example, to reconstruct a sequence of 600 frames with a
mesh containing 144, 000 vertices, our texture representa-
tion consisting of 20 keyframe changing maps and a basic
texture involves 13.25 MB, whereas the per-frame texture
representation involves 1.04 GB. In addition, another 19.74
MB is required for geometry and motion. The average
compression rate for the texture is 1.31% over 12 sequences
with a total of 6, 300 frames.

For the parameters, we set the coefficient c in (2) to 1
when the color values ranged from 0 to 255 and the dis-
tances were measured in centimeters. The keyframe selec-
tion window ∆t varied between 30 and 60 for different se-
quences. A smaller selection window and dense keyframes
do not greatly improve the results, as the keyframes selected
under our parameters are able to cover different dynamics.
A larger selection window and fewer keyframes may skip
important dynamics and lead to poor reconstruction. In map
optimization, we set the patch size to 14 × 14, α in (3) to 2,
and ω2 and ω3 in (9) to 3 and 500, respectively. A total of 10
scales were used to optimize T , M , and D, from 128× 72 to
1, 280× 720. In image synthesis, we set the only predefined
parameter ω̃2 in (12) to 1.
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Fig. 6: Evaluation of the regularization term in map opti-
mization. Rows 1 and 2: maps after optimization without
our regularization term, and reconstruction results with
inputs; rows 3 and 4: maps after optimization with our
regularization term, and reconstruction results with inputs.

5.2 Evaluation

Evaluation of keyframe selection. In our keyframe selection
method, node motion is taken into account to calculate a
score for each frame. We compared our method with the
method used in [4], [5], which only used time information
and clarity for selecting keyframes. The results are presented
in Fig. 5. From the results, we can see that our method was
able to select keyframes with different object poses, whereas
the compared method skipped these frames but selected
frames with similar poses, which is not effective for dynamic
texture synthesis.

Evaluation of the regularization term in map optimization.
We then evaluated the regularization term in (8), which
contributes to decoupling the dynamics of the texture into
the D map. We performed optimizations with and without
this term, and the results are presented in Fig. 6. We can see
that without our regularization term, there was ambiguity
between M and D, and the static texture was incorrectly de-
composed into the D map. Our regularization term success-
fully solved the ambiguity. Moreover, misalignment may
have been solved as color changing and reconstructed into
D without our regularization term, which caused artifacts
in the reconstruction results, as displayed in Fig. 6.

Evaluation of texture representation. Our method multi-
plied the basic texture with one-channel changing maps to
obtain dynamic texture. For texture representation, other
methods [56], [57], [58] used additive texture, which added
three-channel color changes to the basic texture. Using our
optimization strategy, a three-channel changing map of each

Keyframe 1 Keyframe 2 Interpolation

Fig. 7: Evaluation of texture representation. Top: results of
additive texture; bottom: our results. Both in the canonical
pose.

Fig. 8: Comparison with [48]. Left: input color image; mid-
dle: our result; right: the result of [48].

keyframe had too much freedom to obtain a favorable result.
For each keyframe, the basic texture added with a three-
channel map was able to fit the input keyframe image
even though they were not aligned. Thus, added maps
that were not aligned with the basic texture or each other
led to artifacts when interpolating between keyframes, as
illustrated in Fig. 7.

Evaluation of image synthesis. Finally, we evaluated our
image synthesis method, which considers both temporal
and motion similarities. In our accompanying video, we
compare our synthesized sequence to a sequence without
temporal similarity and a sequence without motion sim-
ilarity. We can see that without temporal similarity, the
result contained some jitter, as the used keyframes had
sudden changes. Without motion similarity, the dynamics
of the result may not have matched the input correctly,
as the texture between two keyframes was always linearly
interpolated.

5.3 Results and Comparison
Our technique can synthesize motion sequences from dif-
ferent viewpoints. We tested our methods on various dy-
namic objects, including faces, bodies, clothes, and toys.
We present part of the results in Fig. 14, where each result
contains a reference input, our synthesized result from the
same viewpoint as the input, and results in two novel
viewpoints. In addition, we present the texture of a human
face in UV space as well as an illustration of weight maps
and changing maps in our accompanying video, in which
comparisons with the following alternative solutions can
also be found.

Comparison with [48]. In [48], the authors reconstructed a
dynamic object with geometry, motion, surface albedo, and
lighting in real-time. The surface color was calculated by the
surface normal, albedo, and lighting. If the geometry detail
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Fig. 9: Comparison with static texture. Left: input color
image; middle: our result; right: the result of [5].

Fig. 10: Comparison with direct projection. Left: our results;
right: results of direct projection. The top row presents the
results from the camera viewpoint, while the bottom row
presents the results from a novel viewpoint.

could not be reconstructed correctly, the incorrect normal
led to poor results, as illustrated in Fig. 8. In addition, the in-
accuracies in the geometry, non-rigid motion, camera poses,
and optical distortions of the input images were not well
considered in [48]; thus, the method in [48] fused misaligned
data, obtaining blurred results. In contrast, our method
obtained a high-quality texture despite these inaccuracies.
Furthermore, the geometry in [48] was represented in voxel
space, which limits the spatial resolution by the memory
size.

Comparison with static texture. In [5], the authors proposed
a state-of-the-art method for static texture generation, and
we extended this method to handle dynamic objects by
DynamicFusion [2]. We also used the keyframes selected by
our method for [5] to generate its static texture. The results
are presented in Fig. 9. The texture synthesized by [5] did
not change for different poses of a dynamic object, whereas
our method generated dynamics related to the object poses.

Comparison with direct projection. A naive method to
reconstruct the dynamic texture of an object is to recode
every color image in the sequence and directly project each
vertex to the current image to obtain its color. This method
suffers from input noise and cannot obtain the full texture.
In addition, it has a very high memory cost. The comparison
is presented in Fig. 10, where the direct projection method
fails to synthesize the novel viewpoint.

We also performed quantitative comparisons with pre-
vious studies using the method in [48] and static tex-
ture [5]. In this comparison, we generated results in the
input viewpoints and could thus calculate numerical errors
by assuming the recorded sequence to be the ground truth.
Specifically, we used the average RGB distance between
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Fig. 11: Numeric comparisons with [48] and static texture [5]
(160 frames presented). The error in each frame is calculated
by the average RGB difference. The average error of the
entire sequence (540 frames) is 22.327 for static texture [5],
20.217 for [48], and 9.495 for our method. Selected input
color frames are presented at the top.

the corresponding pixels in the recorded image and the
reconstructed image as the reconstruction error. The results
indicate that our method consistently achieved the lowest
errors in the sequence, as illustrated in Fig. 11. We did
not compare our method with direct projection here, as its
reconstruction error is always zero in this measurement.
However, as discussed previously and illustrated in the ac-
companying video, it cannot reconstruct novel views as well
as other methods. There are three peaks with particularly
large errors in [5] and [48], which correspond to three poses
in the sequence, as displayed in Fig. 11. The methods of [5]
and [48] could not reconstruct large wrinkle changes caused
by these poses. The errors of [5] and [48] decreased in the
rest poses but were still larger than ours. The method of
[48] updated surface albedo by fusing data from previous
frames, and the frames close to the current frame in time
had greater weights in the fusion, while the static texture
[5] was not updated; thus, the error curve changes of [48]
and [5] were not identical. It should be noted that for our
method, the frames with very low errors were the selected
keyframes. Additional results, as well as comparisons, can
be found in our accompanying video.

We also tested our method on the RGBD dataset of [61],
and some sequence results are provided in our accompa-
nying video. This work [61] focused on motion tracking
and did not reconstruct the appearance color of the object;
therefore, we did not compare our method with [61]. Our
method was not effective in some sequences of [61] due to
motion tracking failures, which we discuss in Section 6.

5.4 Application

As we represent our dynamic texture using a basic texture
and a set of multiplicative changing maps, it is convenient
to perform texture editing. In our method, only the basic
texture should be edited, while the changing maps can re-
main the same. Fig. 12 presents some frames of the dynamic
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Fig. 12: Texture editing (four frames). Row 1: reconstruction
results without editing; rows 2 and 3: results after texture
editing.

texture after editing using our method, while the full results
can be found in our accompanying video.

6 DISCUSSION

Our method cannot handle texture changes caused by
global head motion, as our non-rigid motion reconstruction
method [2] cannot distinguish global head motion from
camera motion. Therefore, we assumed that an object had
no global motion or that the global motion had little effect
on the texture in our experiments; otherwise, the parts in
our pipeline that relied on the motion of the object would
not be effective. Motion tracking may fail when fast motion
and topology changes occur, which further led to failure
in our reconstruction. Some movements that cannot be
reconstructed correctly, such as eyeball movements, can also
cause artifacts in our reconstruction. Eye motion tracking
[62] can be used to handle this situation.

Additionally, our method fuses the dynamic texture in-
formation of multiple frames together to seek a favorable
result, and we cannot correctly generate dynamics that have
not been recorded. Our representation of dynamic texture is
effective for Lambertian surfaces; however, highlights and
specular reflectance cannot be handled properly. Deep learn-
ing may be used to improve performance. We present some
inputs and results of failure cases in our accompanying
video as well as in Fig. 13, and for motion tracking failures,
we present their reconstructed geometries.

7 CONCLUSIONS

In this paper, we propose a novel keyframe-based texture
representation that can represent texture changes caused
by objects’ non-rigid motion in uncalibrated daily lighting
conditions and is lightweight to easily reconstruct dynamic
texture using a consumer RGBD sensor. Based on the repre-
sentation, we also propose a dynamic texture reconstruction
method and a novel view synthesis method to allow the
representation to be easily used in real applications. Our
texture reconstruction is robust to distortions and noise in

Tracking failed

due to

 topology changes

Tracking failed

due to

 fast motion

Fig. 13: Failure cases. Rows 1 and 2: texture reconstruction
failure due to specular reflectance and eyeball movement,
respectively; rows 3 and 4: motion tracking failure due to
fast motion and topology changes, respectively.

color and depth inputs, as well as errors in the estimated
object motion. In addition, our image synthesis method fully
explores the information in a recorded sequence to achieve
smooth and high-quality synthesis. Texture editing can also
be easily implemented using our texture representation.
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