
JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 1

EditableNeRF: Editing Topologically Varying
Neural Radiance Fields by Key Points

Chengwei Zheng, Wenbin Lin, and Feng Xu

Abstract—Neural radiance fields (NeRF) achieve highly photo-realistic novel-view synthesis, but it’s a challenging problem to edit the
scenes modeled by NeRF-based methods, especially for dynamic scenes. We propose editable neural radiance fields that enable
end-users to easily edit dynamic scenes and support topological changes. Input with an image sequence from a single camera, our
network is trained automatically and models topologically varying dynamics using our picked-out surface key points. Then end-users
can edit the scene by easily dragging the key points to desired new positions. To achieve this, we propose a scene analysis method to
detect and initialize key points by considering the dynamics in the scene, and a weighted key points strategy to model topologically
varying dynamics by joint key points and weights optimization. Our method supports intuitive multi-dimensional (up to 3D) editing and
can generate novel scenes that are unseen in the input sequence. Experiments demonstrate that our method achieves high-quality
editing on various dynamic scenes and outperforms the state-of-the-art. Our code and captured data are available at
https://chengwei-zheng.github.io/EditableNeRF/.

Index Terms—neural radiance fields, novel-view synthesis, scene editing, topological changes.

✦

1 INTRODUCTION

N EURAL radiance fields (NeRF) [1] have shown great
power in novel-view synthesis and enable many ap-

plications as this method achieves photo-realistic render-
ing [2]. Recent techniques have further improved NeRF
by extending it to handle dynamic scenes [3], [4], [5] and
even topologically varying scenes [6]. However, while these
works mainly focus on reconstruction itself, they do not
consider scene editing. As a result, although camera views
can be changed for rendering, scene editing according to
user preferences remains challenging.

Recently, some frameworks have been proposed to make
neural radiance fields editable in different aspects. Some of
them aim to edit the reconstructed appearance and enable
relighting [7], [8], [9]; some allow controlling the shapes and
colors of objects from a specific category [10], [11], [12],
[13]; and some divide the scene into different parts and
the location of each part can be modified [14], [15], [16].
However, the dynamics of moving objects cannot be edited
by the previous methods, and this task becomes particu-
larly challenging when the dynamics involve topological
changes. Such topological changes can lead to motion dis-
continuities (e.g., between the hammer and the piano keys,
between the cups and the table in Fig. 1) and further cause
noticeable artifacts if not modeled well. A state-of-the-art
framework CoNeRF [17] tries to resolve this problem by
using manual supervision. Nonetheless, it only supports
limited and one-dimensional editing for each part, requiring
user annotations as supervision.

We propose EditableNeRF, editable topologically vary-

• Chengwei Zheng is with the Department of Computer Science, ETH
Zürich, Switzerland, and also with the School of Software and BNRist,
Tsinghua University, Beijing, China (e-mail: zhengcw18@gmail.com).

• Wenbin Lin and Feng Xu are with the School of Software and BNRist,
Tsinghua University, Beijing, China
(e-mail: lwb20@mails.tsinghua.edu.cn; xufeng2003@gmail.com).

ing neural radiance fields that are trained without manual
supervision and support intuitive multi-dimensional (from
1D to 3D) editing. The key of our method is to represent
motions and topological changes by the movements of some
sparse surface key points. Each key point is able to control
the topologically varying dynamics of a moving part, as well
as other effects like shadow and reflection changes through
the neural radiance fields. This key-point-based method
enables end-users to edit the scene by easily dragging the
key points to desired new positions.

To achieve this, we first apply a scene analysis method
to detect key points in the canonical space and track them
in the full sequence for key point initialization. We intro-
duce a network to estimate spatially-varying weights for
all scene points and use the weighted key points to model
the dynamics in the scene, including topological changes.
In the training stage, our network is trained to reconstruct
the scene using the supervision from the input image se-
quence, and the key point positions are also optimized by
incorporating motion (optical flow) and geometry (depth
maps) constraints as additional supervision. After training,
the scene can be edited by manipulating the positions of
these key points, and novel scenes that are unseen during
training can also be generated.

The contribution of this paper lies in the following
aspects:

• Key-point-driven neural radiance fields achieving in-
tuitive multi-dimensional editing even with topolog-
ical changes, without requiring annotated training
data.

• A weighted key points strategy modeling topolog-
ically varying dynamics by joint key points and
weights optimization.

• A scene analysis method to detect and initialize key
points by considering the dynamics in the scene.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 2

Knocking on each piano key

(a) Input Sequence

EditableNeRF
Training

Editing by
Key Points

(b) Reconstruction (c) Editing Results

Novel view (key point) Playing a piece of music Sliding on the piano keys

EditableNeRF
Training

Editing by
Key Points

Shaking and lifting either cup
(one moves, the other stands)

Novel view (2 key points) Freely moving for two dice cups

Fig. 1. Taking an image sequence (a) as input, EditableNeRF is trained fully automatically to reconstruct the captured scene (b) and can handle
topological changes. After training, end-users are able to edit the scene (c) by controlling the automatically picked-out key points (circled in green).
Our method enables up to three-dimensional editing and can generate novel scenes that are unseen during training.

An earlier version of this manuscript appeared in [18],
and the current version makes several novel contribu-
tions and significant enhancements. Firstly, we improve the
weight estimating network in our weighted key points strat-
egy to model dynamic key point weights instead of the static
key point weights in the earlier version. The dynamic key
point weights allow our method to represent more complex
scenes, wherein different objects may move to the same
location across different frames. Secondly, we introduce a
virtual key point to model the background. This addition
can eliminate some artifacts in the background, particularly
when utilizing dynamic key point weights. Thirdly, we
present a new loss function in our training stage, leading to a
more stable optimization and enabling our method to tackle
more challenging scenes. Lastly, comparisons with a point-
based image editing method, comparisons with a baseline
method, new applications, additional results, and expanded
datasets are provided to evaluate the effectiveness of our
proposed techniques and the overall system.

2 RELATED WORK

2.1 Novel-View Synthesis
Many methods achieve rendering novel-view images by
reconstructing scenes and objects into meshes [19], [20], [21],
[22], neural voxels [23], [24], and multi-plane images [25],
[26]. Besides these methods based on discrete representa-
tions, some methods also achieve novel-view synthesis by
using continuous representations [27], [28] and have shown
great potential in this task.

Neural radiance fields (NeRF) [1] achieve photo-realistic
rendering in novel-view synthesis by leveraging continuous
implicit functions of density and view-dependent color to
represent static scenes. To facilitate dynamic reconstructions,
time-variant codes could be used to encode dynamic com-
ponents within NeRF, but requiring multi-view video inputs
[29], [30]. Additionally, deformation fields implemented by
multilayer perceptron (MLP) are applied to warp objects
in each frame into a canonical space [3], [4], [5], enabling
monocular dynamic reconstructions. Some methods also

leverage estimated depth maps [31], ToF depth images [32],
or optical scene flow [33] to improve the performance of
dynamic neural radiance fields. HyperNeRF [6] advances
dynamic NeRF to reconstruct topologically varying scenes
by extending 3D canonical spaces to a hyperspace. However,
unlike traditional explicit representations such as triangular
meshes, NeRF-based methods represent the scenes by im-
plicit functions, which poses significant challenges for scene
editing.

2.2 NeRF Editing

As our method focuses on NeRF editing, we mainly dis-
cuss NeRF-based methods that support user editing in this
section. For editing on explicit 3D representations or other
implicit 3D representations, please refer to [34], [35], [36].

One approach for editing neural radiance fields is to
segment the scene into different components and construct
MLP for each component [14], [15], [16]. Assuming that
different components are individual, this representation al-
lows control of the placements and the relative positions
of these components, as well as deleting or reduplicating a
component. However, these methods do not support editing
the dynamics inside a component and their application
remains constrained.

In addition, some methods achieve relighting and ma-
terial editing on neural fields [7], [8], [9] by decomposing
the scene into surface normals, lights, albedo, and material.
Texture editing can also be accomplished by a 3D-to-2D
texture mapping [37].

Some methods focus on modeling a specific category of
objects [10], [12], [13] instead of general objects. A com-
monly employed solution involves employing conditional
NeRF to model the category of objects while using latent
codes as conditions to encode the variations among different
objects within that category. Consequently, the shape and
appearance can be edited by modifying the latent codes or
through network fine-tuning [10], and even controlled via
text [38] with the assistance of a multi-modal model. Many
methods also focus on modeling editable human bodies

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 3

and faces based on NeRF representation. By incorporating
human body parametric models and skinning techniques
like SMPL [39], neural radiance fields have been extended
to model the human body and can be animated through the
manipulation of skeleton poses [40], [41], [42]. Similarly, hu-
man face parametric models contribute to extending NeRF
for human face modeling and control [43], [44], [45], and
even driven by audio [46]. However, general objects cannot
be handled by these methods.

Recently, NeRF-editing [47] proposes to deform NeRF
on static objects by extracting explicit meshes, deforming
the meshes, and transferring the deformations back into
the implicit representations. However, this method cannot
handle dynamic scenes. CoNeRF [17] proposes an attribute
re-rendering method based on dynamic NeRF. This method
requires user annotations in several frames for network
training, including masks for every dynamic part and their
corresponding attribute values. Then these parts could be
edited through control over the 1D attribute values. We will
show our advantages over CoNeRF in Sec. 4.2.

2.3 Point-based Image Editing
Point-based editing methods have emerged as user-friendly
and intuitive tools for image manipulation, allowing users
to directly interact with images by dragging points. To en-
able point-based editing on StyleGAN, Endo [48] uses a la-
tent transformer to compute the latent codes after dragging
to achieve drag-style editing. DragGAN [49] allows users to
drag the content of GAN-generated images, accomplishing
fine-grained editing through an iterative optimization pro-
cess involving latent code optimization and point tracking.
FreeDrag [50] introduces adaptive template features and
line search with backtracking to enhance the reliability of
point dragging. Furthermore, leveraging the capabilities of
the diffusion model [51], DragonDiffusion [52] enables drag-
style manipulation on diffusion-generated images and ex-
tends its applicability to tasks such as appearance replacing
and object pasting. AnyDoor [53] achieves diffusion-based
image editing by placing objects at user-specified locations.
DragDiffusion [54] further proposes a point-based editing
framework applicable to both real and diffusion-generated
images. Seamlessly looping videos can also be generated
from a single image through the dragging and releasing of
points [55]. However, these image editing methods do not
possess the capacity for 3D modeling, thereby limiting their
ability to generate novel-view images.

2.4 Preliminaries: NeRF and HyperNeRF
Before introducing our approach, we first provide a brief
overview of NeRF [1]. NeRF is a technique that represents a
particular 3D scene by encoding it within an MLP. This MLP
is trained under supervision from multi-view color images.
The input of the MLP H is a position x and a view direction
d, and the output is the density σ at x and the appearance
color c from the view direction d.

(c, σ) = H(x,d). (1)

To render an image, NeRF method traces the camera rays
of all pixels, samples points along these rays, obtains points’
colors and densities from the MLP, and runs volumetric

rendering. To be specific, when rendering a pixel, a sample
point on the traced ray r is defined as rj = o+ jd, where o
is the ray origin and d is the ray direction. And the pixel
color C is computed by integrating all the sample point
colors c, weighted by their densities σ and the accumulated
transmittance V :

C(r) =

∫ jf

jn

V (j)σ(rj)c(rj ,d)dj, (2)

V (j) = exp

(
−
∫ j

jn
σ(rs)ds

)
. (3)

where jn and jf are the near and far planes of the rendering
volume.

HyperNeRF [6] further extends NeRF to reconstruct
topologically varying dynamic scenes. For motion model-
ing, HyperNeRF first employs a warp field T to deform
query point x into its canonical position x′.

x′ = T (x, βt), (4)

where βt is the warp latent code in frame t and is opti-
mized during training. However, this warp field can only
model spatial-smoothing deformation but not topologically
varying motions. If an object in two frames is in different
topology states, this warp field cannot deform them into a
shared 3D canonical space. To figure this out, HyperNeRF
introduces ambient dimensions, denoted as a, in addition
to 3D canonical space. This combination forms hyperspace,
a higher-dimensional canonical space. Then, various 3D
canonical spaces with different topology states can be mod-
eled into a unified continuous hyperspace. The discontinu-
ous deformations in 3D space caused by topological changes
can be modeled by continuous functions (such as MLP)
within the hyperspace.

a = A(x, βt), (5)

(c, σ) = H(x′ ⊕ a,d, αt). (6)

Here the mapping function A is implemented as an MLP,
and αt is an appearance latent code. The symbol ⊕ repre-
sents the concatenation operation.

3 EDITABLENERF
Input with color image sequence of a dynamic scene, our
method can reconstruct the scene automatically based on
neural radiance fields. Several surface key points are se-
lected to encode topologically varying dynamics. Key point
positions in every frame are optimized during training
and different key point positions encode different motion
states. After reconstruction, end-users can edit the scene by
manipulating key point positions.

Our pipeline is illustrated in Fig. 2. First, we utilize
two methods, HyperNeRF [6] and RAFT [56], to compute
the depth maps of input frames and optical flow between
consecutive input images, respectively. Then we apply a
scene analysis method to detect and initialize key point
positions (Sec. 3.3). After that, our NeRF-based network
(Sec. 3.1) is trained automatically (Sec. 3.2) to model the
captured scene based on our weighted key points strategy.
Finally, the reconstructed scene can be edited by dragging
the key points to their desired positions.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 4

MLP

MLP
x x'

βt

Warp Field

kt

RAFT

HyperNeRF Lgeo

MLP

so
ftm

ax

Σ

Lmotion

Optical Flow

Depth Maps

MLP

warp
latent code

appearance
latent code

αt

view
direction

d

density σ color c

 Volumetric Rendering

Input Images

Weight Estimating
Network

Weighted Key Points Strategy

Key Points

Fig. 2. EditableNeRF pipeline. The query point x is first warped into the canonical space by a warp field with a latent code βt in frame t. Next, we
compute the key point weights for this canonical point x′ and use it to calculate a linear combination of all key point positions kt, called weighted
key points. After that, we feed kt concatenated with x′ to the NeRF MLP, and the output density and color can be used for volumetric rendering. In
the training stage, optical flow and depth maps are utilized to supervise key point positions. Editing can be achieved by manipulating key points.

3.1 Network
We first introduce our network architecture, which is shown
in Fig. 2. Our network represents the scene as a field of
density and radiance [1]. Given a query point, similarly to
HyperNeRF [6] as detailed in Sec. 2.4, we first use a warp
field to model slight movements:

x′ = T (x, βt). (7)

Here the warp field T maps a query 3D point x to its
canonical location x′, and βt is the warp latent code in
frame t. This warp field models slight movements and en-
sures alignment of the scene across different frames despite
some errors in the input camera parameters. However, as
discussed in [6], it’s hard for this continuous warp field
to model discontinuous movements caused by topological
changes.

Then it becomes necessary to represent various topology
and motion states in the canonical space. Recognizing that
motions and topological changes are always related to sur-
face point movements, we address this challenge by making
use of sparse surface key points. These 3D key points are
attached to the objects’ surfaces and also move with the
objects. Each key point controls the topologically varying
dynamics of a moving part and also some effects caused by
this part like shadow and reflection changes. An example of
key points is presented in (a) of Fig. 3. For each moving part
in the scene, we automatically select one corresponding key
point, which will be introduced in Sec. 3.3, and the number
of key points is denoted as N . The key points’ positions
in each input frame will be optimized automatically in our
training stage to achieve this modeling. Besides, we also use
a virtual key point to model the background, which will be
detailed later.

We assume that different locations in the canonical space
are affected by different key points. So for a query point
x′, an MLP followed by softmax is used to decide which

(a) (b) (c) (d)

Fig. 3. Examples of key points and key point weights. (a) shows a color
image and its key points (circled in green). (b) and (c) demonstrate the
weights of the two key points, respectively. (d) shows the weights of the
virtual key point for background modeling. These weights are obtained
by employing the surface points corresponding to pixels as query points.

key point should control its dynamics. This network, termed
weight estimating network, takes the canonical coordinate x′

and a concatenated vector containing all key point positions
kt ∈ R3N as input, and outputs a weight vector w ∈ RN ,
indicating the impact of each key point on the query point
x′. And an example is shown in Fig. 3.

w = W (x′,kt). (8)

In the earlier version [18], only the query point x′ is
inputted into the weight estimating network to model the
static key point weights. In contrast, the current version
incorporates both the query point x′ and the key point
positions kt as inputs to model dynamic key point weights,
allowing the key point weights to dynamically adjust ac-
cording to key point positions. This is because, in some
challenging scenes, different objects that are controlled by
distinct key points may move to the same region in different
frames. In such cases, a point within this region should be
controlled by different key points under different motion
states. Thus, attempting to model these scenes using the
static key point weights will lead to artifacts. Different from
the earlier version [18], additionally inputting key point
positions kt makes it possible for the network to determine
which key point should affect the position x′ in frame t.

Furthermore, we use a virtual key point for background
modeling, to eliminate the artifacts caused by the introduc-

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 5

tion of dynamic key point weights. This virtual key point
is actually a 3D latent code and doesn’t correspond to any
physical point within the scene. Its values are optimized
during training. Without this virtual key point, the back-
ground may be controlled by different key points across the
sequence when utilizing dynamic key point weights. This
can lead to artifacts when the key point that controls the
background suddenly changes from one to another. The in-
clusion of the virtual key point ensures that the background
is consistently modeled by this virtual key point, avoiding
sudden changes in key point weights. The weights of this
virtual key point are shown in (d) of Fig. 3.

Subsequently, we formulate a weighted key points vector p
by computing a linear combination of all key point positions
k to model the topologically varying dynamics at x′.

pt(x
′) =

N∑
i=1

wi(x′) · ki
t. (9)

The superscript i is the index of key points, and the sub-
script t is the frame index. The virtual background key point
is included in these N key points.

Next, the 3D canonical coordinate x′ and the weighted
key points p are concatenated to form a 6D coordinate in
hyperspace for topologically varying scene modeling. This
hyperspace is proposed in HyperNeRF [6] and is introduced
in Sec. 2.4. In addition to 3D space, HyperNeRF incorporates
ambient dimensions to model canonical objects in hyper-
space and encodes different topology and motion states
with different ambient coordinates. In our approach, we
utilize the weighted key points p as ambient coordinates
to effectively model topologically varying dynamics.

Finally, the following NeRF MLP is fed with the 6D
coordinate in hyperspace:

(c, σ) = H(x′ ⊕ pt(x
′),d, αt). (10)

Here d is the view direction, and αt is the appearance
latent code. This NeRF MLP outputs the color c and the
density σ that can be used for NeRF volumetric rendering,
as introduced in Sec. 2.4.

After training, users can easily edit the modeled scene
by feeding the network with desired key point positions. As
the key points are in the 3D space, our method supports up
to three-dimensional editing for each part. We also provide
a graphical user interface (GUI) in Sec. 4.4.

3.2 Loss Functions and Training

In the training stage, all the latent codes and MLP parame-
ters are optimized to effectively model the scene. As we em-
ploy key points to encode topologically varying dynamics,
we need to additionally optimize key point positions in each
input frame. To keep our key points on the object surfaces
and maintain temporal consistency, novel loss functions are
incorporated into our training stage.

First, we propose a motion loss, which constrains that
the key point positions in two consecutive frames should be
consistent with the optical flow from pre-trained RAFT [56].

Lmotion(t, i) =
∥∥Πt+1(k

i
t+1)−Πt(k

i
t)− F t+1

t (Πt(k
i
t))
∥∥2 ,
(11)

where Πt is the projection function employing the camera
pose of frame t, and F t+1

t is the optical flow from frame t to
frame t+1. This loss ensures that the 2D key point positions
in different frames correspond to the same surface point.

The motion loss provides sufficient supervision within
the 2D image space, whereas the key points are in the 3D
space. Therefore, the inclusion of a geometry loss becomes
crucial in preserving the key points on the surfaces.

Lgeo(t, i) =
∥∥Φt(k

i
t)−Dt(Πt(k

i
t))
∥∥2 . (12)

Here the function Φt(k
i
t) calculates the distance from the

key point ki
t to the camera position in frame t, and Dt

denotes the depth map rendered from HyperNeRF [6] in the
original camera view. This HyperNeRF is pre-trained before
our training stage and takes the same input as ours. Note
that neither the motion loss nor the geometry loss is applied
to the virtual background key point.

Different from the previous version [18], we propose a
novel weight regularization loss to improve the robustness.
This loss function constraints that each key point should
fully control the position where it is located.

Lweight(t, i) =
∥∥W (ki

t,kt)− ε(i)
∥∥2 . (13)

W and kt are the weight estimating network and key point
vector in (8). ε(i) is a one-hot vector, with its ith element set
to 1 while others set to 0. Also, this loss will not be applied
to the virtual key point.

Besides, we use a reconstruction loss between the ren-
dered RGB images C and the input images C̃ , as well as a
warp regularization loss similar to HyperNeRF [6].

Lrec(t) =
∥∥∥Ct(kt, αt, βt)− C̃t

∥∥∥2 , (14)

Lreg(t) =
1

∥St∥
∑
x∈St

∥x− T (x, βt)∥2 , (15)

where St is the set of surface points in frame t. This warp
regularization loss makes sure that the warp field only
models slight movements to compensate for the errors in
the input camera parameters and distortions in the input
images. Consequently, this loss helps avoid the ambiguity
between the warp field and our weighted key points model.

3.3 Key Point Detection and Initialization
To initialize the network training, it is necessary to deter-
mine the key point number N and acquire the initial 3D
locations of key points. To achieve this, we propose a scene
analysis method, which first detects reference key points in
canonical space and corresponding reference frames, then
initializes key points’ positions in each frame. The virtual
background key point is initialized randomly.

Our key points are used to model topologically varying
dynamics, so we need to identify 3D points with significant
dynamics in the canonical space as our reference key points.
As detailed in Sec. 2.4, HyperNeRF [6] utilizes different
ambient coordinates to encode varying topology and motion
states at a position. We have already trained a HyperNeRF
for depth maps in (12). By leveraging this pre-trained Hy-
perNeRF, we can detect key points based on the ambient
dimensions a. For a point x, substantial variations of its a

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 6

Gaussian Filter

(x,a0)

(x,a1) variances of
ambient coordinates

detected key
points

Fig. 4. A 2D visualization of our key point detection method. For each
point x, we compute the variance of its ambient coordinates a across
the entire sequence. Then all the points with local maximum variances
after a 2D Gaussian filter are selected as our reference key points.

across different frames indicate significant dynamics at x, so
we use all the positions with locally maximal variations in
ambient coordinates as our reference key points.

To be specific, for each input frame, we trace the original
camera rays of all pixels and find the corresponding surface
points. Subsequently, a 3D voxel volume in the canonical
space is constructed to record the ambient coordinates of
these surface points. After traversing the entire input se-
quence, we calculate the variance of ambient coordinates for
every voxel, followed by a 3D Gaussian filter. All the center
points of the voxels with local maximum variances after the
Gaussian blur are then selected as our reference key points
kref . Consequently, the number of key points N is equal to
the number of local maximum points. As our 3D detection
is difficult to visualize, we present a 2D version in Fig. 4 by
rendering all frames in a fixed camera view, computing the
variance for each pixel, and applying a 2D Gaussian filter.

Then for each reference key point, we need to select a
reference frame wherein the reference key point lies on the
object surfaces. To achieve this, we employ a formulation
akin to the geometry loss described in (12). For simplicity,
we omit the key point indices here, as each key point is
handled independently in this process.

∥Φt(kref)−Dt(Πt(kref))∥2 < δ. (16)

Here δ is a pre-defined threshold. The first frame t that
satisfies (16) will be selected as the reference frame tref .

Now for each key point, we have both a reference key
point position and a corresponding reference frame. To
initialize key point positions in the whole sequence, we
propagate this reference key point to other frames by optical
flow from pre-trained RAFT [56]. The reference key point is
first projected into the input image of the reference frame
to get its 2D position, and the 2D position is propagated
frame-by-frame using optical flow as illustrated in Fig. 5.
Then these 2D positions are projected back into 3D space
using the depth maps from HyperNeRF. Note that there
are accumulative errors in this initialization due to frame-
by-frame propagation, while these errors will be eliminated
during the subsequent training stage.

For particularly long input sequences, the aforemen-
tioned initialization method may not yield satisfactory re-
sults. This is because the accumulative errors over time
may become too large, and the key points in the images
may be incorrectly propagated into other objects such as the
background. To address this issue, we propose a skipping
propagation method as shown in Fig. 5, which additionally

tref tref +1

tref -1

tref +Mtref -M

tref

Skipping Propagation (Optional)

Fig. 5. Propagating the reference key point in the reference frame to
other frames for initialization. Skipping propagation is only used for
particularly long input sequences.

propagates the reference key point in the reference frame
every M frames (i.e., tref to tref + M , tref to tref + 2M ,
and so on). Then we use them to replace the frame-by-
frame positions before further frame-by-frame propagation
if the skipping confidences are greater than a threshold. This
skipping confidence is calculated based on the consistency
between the forward and backward optical flow:

Conf(t) =
∥∥∥F tref

t (F t
tref

(k̂ref))− k̂ref

∥∥∥−1
, (17)

where t = tref + iM , i ∈ Z, and the hat of k̂ref indicates
that it is a 2D position in the reference frame.

4 EXPERIMENTS

We present some results after editing in Fig. 6. Some effects,
including shadow and reflection changes, can also be accu-
rately edited. Please refer to our accompanying video for
more results and experiments.

4.1 Implementation Details
We set the weight of motion loss to 10−4, the weight of
geometry loss to 0.5, and the weight of warp regularization
loss to 0.1. The real data is captured in a resolution of
1280×720 and down-sampled to 320×180 for training. Our
network is trained on 4 NVIDIA GeForce RTX 3090 graphics
cards, requiring around 5 hours for completion over 250k
iterations. The camera poses of input frames are solved by
COLMAP [57].

Local coordinate systems for key points. The key point
positions are transferred into local coordinate systems for
normalization. For each key point, excluding the virtual
background key point, this local coordinate system sets
the average key point position as the origin and scales the
coordinates to ensure that the largest range among the three
dimensions is normalized to 1, both based on the initialized
positions. This normalization step is crucial, otherwise, the
positional encoding functions [1] for key points become
nearly linear when positions vary in a small range. Besides,
in scenes involving objects with complex geometries, our
method may select duplicate key points on the same ob-
ject. We can remove duplicate key points if the initialized
local coordinates of two key points are always very similar
throughout the full sequence.

4.2 Comparisons
We compare our method with HyperNeRF [6], CoNeRF [17],
DragDiffusion [54] and a baseline method HyperNeRF+Opt
on both real and synthetic data.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 7

Fig. 6. Our editing results on various scenes. The first image of each scene also shows the key points (circled in red or green). The input data of
the car transformer scene on the right side is provided by CoNeRF [17]. The last row on the right side is from a synthetic sequence.

TABLE 1
Quantitative comparisons of reconstruction and editing qualities on synthetic data. The reconstruction qualities are measured by the errors in

novel-view synthesis. We report PSNR, MS-SSIM [58], and LPIPS [59]. Our method performs the best.

Reconstruction Editing
Method PSNR ↑ MS-SSIM ↑ LPIPS ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
HyperNeRF [6] 40.97 0.9963 0.0524 - - -
HyperNeRF+Opt 40.97 0.9963 0.0524 31.97 0.9763 0.0691
CoNeRF [17] 39.29 0.9916 0.0610 37.10 0.9879 0.0637
Ours (pre) [18] 42.10 0.9967 0.0522 37.29 0.9912 0.0577
Ours 42.55 0.9973 0.0515 38.18 0.9935 0.0553

Dataset. For synthetic data, we generate five sequences
using Kubric [60], each containing 400 frames. We evaluate
novel view synthesis and editing abilities by manipulating
the viewpoints and object positions in these sequences and
then rendering ground truth. Two of these sequences are
newly introduced in the current version, featuring chal-
lenging scenes where different objects move to the same
location in different frames. Some results on these synthetic
sequences are shown in Fig. 6 and Fig. 10. For real data, we
use both our captured dataset and CoNeRF dataset [17]. As
it is difficult to obtain real data ground truth for novel view
synthesis and editing, quantitative results on real data focus
solely on a video interpolation task.

Comparison with HyperNeRF [6] and baseline. Hyper-
NeRF is capable of scene reconstruction but does not enable
scene editing. We extend HyperNeRF by integrating RAFT
to establish a baseline method HyperNeRF+Opt, aimed at
achieving scene editing. This baseline is newly introduced
upon the previous version [18]. HyperNeRF+Opt leverages
HyperNeRF for reconstruction while can be edited through
the optimization of the latent code β in (4) and (5). Optical
flow serves as supervision for this optimization process.
To be specific, given an original rendered image C0 from
HyperNeRF, a source pixel point x0 on this image, and a
target pixel point x1, HyperNeRF+Opt edits the scene by
finding a proper latent code β so that the surface point
corresponding to x0 in the original image C0 is relocated
to the target point x1. This optimization is guided by the
following loss function:

Lopt(β) =
∥∥∥x1 − x0 − F

Cβ

C0
(x0)

∥∥∥2 . (18)

TABLE 2
Quantitative comparisons of interpolation qualities on real data. We use

15 FPS videos as training sets and interpolate for 30 FPS videos. All
the compared methods get similar results, as this task is less

challenging compared to novel view synthesis and editing.

Method PSNR ↑ MS-SSIM ↑ LPIPS ↓
HyperNeRF [6] 30.56 0.9864 0.1281
CoNeRF [17] 30.65 0.9869 0.1307
Ours 30.68 0.9870 0.1311

Here F
Cβ

C0
is the optical flow from the original image C0

to the rendered image Cβ generated using latent code β.
We compare the reconstruction and editing qualities on syn-
thetic data, presented in Tab. 1, and interpolation qualities
on real data, shown in Tab. 2. For editing, the baseline
method doesn’t perform as well as our method due to
the inaccuracies of the optical flow, particularly in cases
involving long-distance editing.

Comparison with CoNeRF [17]. CoNeRF allows topo-
logically varying editing but only supports one-dimensional
editing for each dynamic part. Additionally, users are re-
quired to select frames and provide annotations for each
frame, including masks for every editable part and their
attribute values. We show some editing results of ours and
CoNeRF in Fig. 7. Firstly, as illustrated in the (a) results,
our method enables editing 3D dynamics, which cannot
be encoded by 1D attribute values in CoNeRF. Secondly,
our training stage is fully automatic while CoNeRF needs
user annotations. Especially when different parts are close
to each other, it becomes quite difficult for users to provide
precise masks at the boundaries, which leads to artifacts

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 8

Ours CoNeRF Ours CoNeRF Ours CoNeRF

(a) (b) (c)

Fig. 7. Comparisons with CoNeRF [17]. Our method does not require user annotations for training and supports up to three-dimensional editing.
Note that the rotations in (b) also cannot be represented by the one-dimensional attribute values in CoNeRF.

TABLE 3
Ablation studies on editing ability. We evaluate the motion loss, the

geometry loss, and the initialization stage. Our final method in the last
row performs the best.

Method PSNR ↑ MS-SSIM ↑ LPIPS ↓
Base (w/o supervision) 24.17 0.8529 0.1156
+ Lmotion 27.02 0.9426 0.0775
+ Lmotion + Lgeo 30.61 0.9651 0.0671
+ Lmotion + Lgeo + init 38.18 0.9935 0.0533

in CoNeRF as shown in (c) of Fig. 7. Thirdly, our drag-
style editing is more intuitive than inputting attribute values
as in CoNeRF. For CoNeRF training, we utilize ground
truth masks and ground truth attribute values, whereas our
method still leverages the optical flow from RAFT and the
depth maps from HyperNeRF. Quantitative comparisons
are also shown in Tab. 1 and Tab. 2.

Comparison with DragDiffusion [54]. We compare our
method with a 2D image editing method DragDiffusion [54]
in Fig. 8. This method enables drag-style editing on both
real and diffusion-generated images. To edit a single im-
age, users need to input a mask for the editable region,
an original point, and a target point. Compared to our
method, DragDiffusion only takes a single image as input
and cannot integrate information from an entire sequence,
thus it doesn’t reach the same performance as ours and often
results in artifacts. In addition, DragDiffusion is not able to
generate novel-view images.

Besides, for rendering a single frame, CoNeRF takes
1.77s, HyperNeRF takes 0.95s, and ours takes 0.90s. Com-
parisons with our previous version [18] are also provided in
the supplementary video.

4.3 Evaluations
Ablation studies on editing ability. Our method makes
use of 3D key points based on the supervision of 2D
optical flow and 1D depth maps. They are first utilized to
initialize key point positions, then to formulate the motion
loss and the geometry loss. We evaluate the two losses and

DragDiffusion OursInput

Fig. 8. Comparisons with DragDiffusion [54]. Input images show the
editable region (brighter area), source points (red), and target points
(blue). The editing results in the first row also show the target points.

the initialization stage in Tab. 3 by measuring the editing
qualities on our synthetic dataset. The base method does
not use any key point supervision and the modeled scene
changes randomly according to key point movements. Our
final method performs the best.

Ablation studies on reconstruction quality. As pre-
sented in Tab. 1, our method slightly outperforms HyperN-
eRF on reconstruction quality. For a more detailed analysis,
we show ablation studies on reconstruction in Tab. 4. We
evaluate the two losses (motion loss and geometry loss)
and the initialization stage. These results indicate that this
improvement is mainly due to the key point initialization. In

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 9

TABLE 4
Ablation studies on reconstruction quality. We evaluate the two losses

(motion loss and geometry loss) and the initialization stage.

Method PSNR ↑ MS-SSIM ↑ LPIPS ↓
HyperNeRF [6] 40.97 0.9963 0.0524
Ours w/o init 40.42 0.9959 0.0527
Ours w/o 2 losses 42.87 0.9974 0.0515
Ours 42.55 0.9973 0.0515

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0 40 80 120 160 200 240 280 320 360 400

 Before Training After Training

Drawer fully open
Drawer fully open

Fig. 9. Evaluation of key points optimization. This data sequence con-
tains pushing and pulling a drawer four times. The vertical coordinates
show the key point coordinates along the moving direction, and the
horizontal coordinates are the frame indices. Dot lines indicate the key
point coordinates when the drawer is fully open. After training, different
frames in which the drawer is fully open have the same coordinate,
and the accumulative errors in the initialization are eliminated. The two
images on the right demonstrate the key point positions after training.

our initialization, the frames that shared similar motions are
initialized with similar key point positions, which leads to
better results than the random initialization in HyperNeRF.
The two losses have little effect on reconstruction quality,
but note that the modeled scene can not be edited without
these losses, and our method focuses on editing rather than
improving the reconstruction quality.

Evaluation of weighted key points strategy. In our
method, we use the weighted key points vector to model
topologically varying dynamics. A naive alternative method
is directly using the concatenated vector containing all key
point positions kt ∈ R3N to replace our weighted key
points. However, this naive method results in artifacts as
shown in (a) of Fig. 10. This is because our weighted key
points vectors perform as ambient coordinates in hyper-
space [6]. In our method, the number of ambient dimen-
sions is always 3, while the concatenated vector intro-
duces a higher number of dimensions (3N), resulting in
a high-dimensional hyperspace. Many areas in this high-
dimensional hyperspace are far away from the training
space, which leads to artifacts when the key points are
edited into these areas for novel scene generation.

Evaluation of key points optimization. Our key point
positions are optimized in the training stage after initial-
ization. We show the key point positions both before and
after training in Fig. 9. These results demonstrate that there
exist accumulative errors in the initialization, and these
errors are eliminated through our training stage. In addition,
directly using the initialized key point positions without
optimization leads to artifacts in the results, as shown in
(b) of Fig. 10.

Evaluation of dynamic key point weights. Instead of
using the static key point weights in the earlier version [18],
we use dynamic key point weights to model more challeng-

Ours Ours Ours

Concatenated
Key Points

Initialized Key Points
w/o Optimization

Static Key Point
Weights

(a) (b) (c)

Fig. 10. Evaluations of novel techniques in our method. (a) shows re-
placing our weighted key points vector with the concatenated key points
vector leads to artifacts in novel scene generation. (b) demonstrates that
directly using the initialized key point positions without optimization will
cause artifacts in the results. (c) shows the static key point weights used
in our previous version [18] fail to model overlap regions that different
objects can move into. (c) is from a synthetic sequence.

Input color

Ours Key Point Weights

Key Point Weights w/o Weight Reg. Loss

Fig. 11. Evaluation of weight regularization loss. In this sequence, both
the hand and the drawer can move to the middle region and are close to
each other in some frames. Without the weight regularization loss, the
hand may be incorrectly controlled by the key point on the drawer. The
last column presents the weights of the virtual background key point.

ing scenes. Results in our accompanying video and (c) of
Fig. 10 show that this method successfully models the scenes
where two objects move to the same location across different
frames, which our earlier version fails to do.

Evaluation of background key point. Different from the
previous version [18], a virtual key point is further intro-
duced to model the background in the scene. This is because,
in real data, the captured backgrounds in different frames
are not perfectly aligned. A warp field could help to handle
the misalignment by warping the background in each frame
into the canonical space. But when we use the dynamic key
point weights, the canonical background can be modeled by
different key points in different states, leading to potential
artifacts when the key point that controls the canonical
background suddenly switches from one to another. In our
accompanying video, we showcase these artifacts, and using
a virtual key point for background modeling successfully
addresses this problem.

Evaluation of weight regularization loss. In addition to
the losses used in the previous version [18], we further add a
weight regularization loss in (13) to improve the robustness
of our system and enable it to effectively model more
challenging scenes. The results in Fig. 11 demonstrate that
without this loss function, our method may fail in modeling
some complex scenes, where different objects move to the
same location in different frames and are close to each other.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 10

Fig. 12. Graphical user interface. The left widget shows the rendered
image and the corresponding draggable key points. The right widget
allows the user to adjust the viewpoint.

4.4 Applications

Graphical user interface (GUI). We implement a user-
friendly GUI for editing and novel-view synthesis, which
is shown in Fig. 12 and in our accompanying video. Our
GUI also supports drawing a trail of key points and then
generating a video. Note that end-users actually manipulate
the key points in the 2D interface, so we provide 1D default
depth values for key points to form their corresponding 3D
positions, and we also allow end-users to further edit these
depth values as needed. To compute the default depth value
for a key point located at pixel q, we first project all the key
point positions in the input sequence into the current view,
then find K closest key point positions to the pixel q in 2D
image space, and compute the average depth value of these
K key point positions.

Novel scenes generation. Novel scenes that are unseen
in the training sequence can also be generated by our
method. For example, in the piano toy sequence of Fig. 1,
the input data comprises only instances of knocking on in-
dividual piano keys, while our method can generate sliding
on the piano keys by interpolation. Our method can also
combine various dynamics of different parts to create novel
scenes, such as the dice cup results shown in Fig. 1 and in
our accompanying video.

Motion transfer. After the reconstruction, our modeled
scenes can be driven by motions from other sequences. In
our accompanying video, we show a phonograph toy driven
by a rotating disk from another source video. To achieve
this, optical flow is used to track a manually selected point
within the source video and an affine transformation then
maps the tracked point into our key point space.

Segmentation improvement. Our method can be used
to improve video object segmentation results. We show
the segmentation results from Track-Anything [61] and our
improved results, both in Fig. 13 and in our supplementary
video. This improvement is applicable when the tracked

Track-Anything Our Improvement Key Point Weights

Fig. 13. Segmentation improvement. We use key point weight to refine
the video object segmentation results from Track-Anything [61].

Fig. 14. Editing results on a challenging scene where the selected key
point is not always visible in the full sequence.

object is a moving part corresponding to a key point. To
achieve this, we render the key point weights in the camera
view and then use them to clip the masks from Track-
Anything [61]. Our key point weights cannot be directly
used as segmentation masks because some background
regions are also affected by key points due to shadow and
reflectance changes.

4.5 Discussions
We build our framework based on surface key points. How-
ever, in certain challenging sequences, there may not exist a
proper surface point that is visible in all frames to serve as
a key point. Our method can still produce plausible results
for these sequences, but the consistency of key points is not
as good as in other sequences, as shown in Fig. 14.

Limitations. We assume that the dynamics of a canonical
location primarily depend on a single key point. If the scene
becomes very complex and the dynamics of a position are
affected by numerous parts, such as dancing humans, our
method may fail. Our method cannot work well when RAFT
or HyperNeRF fails and it’s challenging for our method
to pick out surface key points for semi-transparent objects
like smoke. Our generated dynamics are learned from input
videos. Therefore, extrapolation editing where key points
are far away from their training space cannot be performed
well. Also, our method can only generate one-dimensional
dynamics when the objects only move in one direction, such
as drawers. Our drag-style editing doesn’t support other
types of editing such as relighting and object insertion.

Future works. Our method supports 3D editing, while
a freely moving object has a total of 6 DOFs, which can-
not be modeled by only a key point position. To address
this problem, incorporating the orientation information in
Canonical Capsules [62] can be a valuable solution. More-
over, the integration of techniques like Instant-NGP [63] or
Gaussian splatting [64] has the potential to further enhance
our method’s performance.

5 CONCLUSIONS

We propose EditableNeRF, editable topologically varying
neural radiance fields that enable end-users to easily edit
dynamic scenes. The key to achieving this is leveraging

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 11

weighted key points to model topologically varying dy-
namics, which further achieves intuitive multi-dimensional
editing. A scene analysis method that can measure the
dynamics in the scene is also proposed to detect and further
initialize these key points. Our method is designed for user-
friendliness, with fully automatic training using a single-
view input sequence, introducing novel applications for
editable photo-realistic novel-view synthesis.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program
of China (2018YFA0704000), Beijing Natural Science Founda-
tion (M22024), the NSFC (No.62021002), and the Key Re-
search and Development Project of Tibet Autonomous Re-
gion (XZ202101ZY0019G). This work was also supported by
THUIBCS, Tsinghua University, and BLBCI, Beijing Municipal
Education Commission. Feng Xu is the corresponding author.

REFERENCES

[1] B. Mildenhall, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” in European Conference on Computer Vision.
Springer, 2020, pp. 405–421.

[2] K. Gao, Y. Gao, H. He, D. Lu, L. Xu, and J. Li, “Nerf: Neural
radiance field in 3d vision, a comprehensive review,” arXiv preprint
arXiv:2210.00379, 2022.

[3] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M.
Seitz, and R. Martin-Brualla, “Nerfies: Deformable neural radiance
fields,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 5865–5874.

[4] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
nerf: Neural radiance fields for dynamic scenes,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 10 318–10 327.

[5] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Lassner, and
C. Theobalt, “Non-rigid neural radiance fields: Reconstruction and
novel view synthesis of a dynamic scene from monocular video,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 12 959–12 970.

[6] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B.
Goldman, R. Martin-Brualla, and S. M. Seitz, “Hypernerf: a higher-
dimensional representation for topologically varying neural radi-
ance fields,” ACM Transactions on Graphics (TOG), vol. 40, no. 6,
pp. 1–12, 2021.

[7] X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman,
and J. T. Barron, “Nerfactor: Neural factorization of shape and
reflectance under an unknown illumination,” ACM Transactions on
Graphics (TOG), vol. 40, no. 6, pp. 1–18, 2021.

[8] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. Lensch,
“Nerd: Neural reflectance decomposition from image collections,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 12 684–12 694.

[9] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall,
and J. T. Barron, “Nerv: Neural reflectance and visibility fields
for relighting and view synthesis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
7495–7504.

[10] S. Liu, X. Zhang, Z. Zhang, R. Zhang, J.-Y. Zhu, and B. Rus-
sell, “Editing conditional radiance fields,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
5773–5783.

[11] C. Xie, K. Park, R. Martin-Brualla, and M. Brown, “Fig-nerf:
Figure-ground neural radiance fields for 3d object category mod-
elling,” in 2021 International Conference on 3D Vision (3DV). IEEE,
2021, pp. 962–971.

[12] W. Jang and L. Agapito, “Codenerf: Disentangled neural radiance
fields for object categories,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021, pp. 12 949–12 958.

[13] F. Wei, R. Chabra, L. Ma, C. Lassner, M. Zollhöfer, S. Rusinkiewicz,
C. Sweeney, R. Newcombe, and M. Slavcheva, “Self-supervised
neural articulated shape and appearance models,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 15 816–15 826.

[14] B. Yang, Y. Zhang, Y. Xu, Y. Li, H. Zhou, H. Bao, G. Zhang, and
Z. Cui, “Learning object-compositional neural radiance field for
editable scene rendering,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021, pp. 13 779–13 788.

[15] J. Zhang, X. Liu, X. Ye, F. Zhao, Y. Zhang, M. Wu, Y. Zhang, L. Xu,
and J. Yu, “Editable free-viewpoint video using a layered neural
representation,” ACM Transactions on Graphics (TOG), vol. 40, no. 4,
pp. 1–18, 2021.

[16] H.-X. Yu, L. Guibas, and J. Wu, “Unsupervised discovery of object
radiance fields,” in International Conference on Learning Representa-
tions, 2021.

[17] K. Kania, K. M. Yi, M. Kowalski, T. Trzciński, and A. Tagliasacchi,
“Conerf: Controllable neural radiance fields,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 18 623–18 632.

[18] C. Zheng, W. Lin, and F. Xu, “Editablenerf: Editing topologically
varying neural radiance fields by key points,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 8317–8327.

[19] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and Y. Liu, “Real-time
geometry, albedo, and motion reconstruction using a single rgb-
d camera,” ACM Transactions on Graphics (TOG), vol. 36, no. 3, pp.
1–13, 2017.

[20] M. Dou, P. Davidson, S. R. Fanello, S. Khamis, A. Kowdle, C. Rhe-
mann, V. Tankovich, and S. Izadi, “Motion2fusion: Real-time volu-
metric performance capture,” ACM Transactions on Graphics (TOG),
vol. 36, no. 6, pp. 1–16, 2017.

[21] J. Thies, M. Zollhöfer, and M. Nießner, “Deferred neural render-
ing: Image synthesis using neural textures,” ACM Transactions on
Graphics (TOG), vol. 38, no. 4, pp. 1–12, 2019.

[22] C. Zheng and F. Xu, “Dtexfusion: Dynamic texture fusion using
a consumer rgbd sensor,” IEEE Transactions on Visualization and
Computer Graphics, vol. 28, no. 10, pp. 3365–3375, 2021.

[23] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and
Y. Sheikh, “Neural volumes: learning dynamic renderable vol-
umes from images,” ACM Transactions on Graphics (TOG), vol. 38,
no. 4, pp. 1–14, 2019.

[24] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and
M. Zollhofer, “Deepvoxels: Learning persistent 3d feature em-
beddings,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2437–2446.

[25] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, “Stereo
magnification: learning view synthesis using multiplane images,”
ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–12, 2018.

[26] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar, “Local light field fusion:
Practical view synthesis with prescriptive sampling guidelines,”
ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1–14, 2019.

[27] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation
networks: Continuous 3d-structure-aware neural scene represen-
tations,” Advances in Neural Information Processing Systems, vol. 32,
pp. 1121–1132, 2019.

[28] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove, “Deepsdf: Learning continuous signed distance functions
for shape representation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 165–174.

[29] T. Li, M. Slavcheva, M. Zollhoefer, S. Green, C. Lassner, C. Kim,
T. Schmidt, S. Lovegrove, M. Goesele, R. Newcombe et al., “Neural
3d video synthesis from multi-view video,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 5521–5531.

[30] M. Işık, M. Rünz, M. Georgopoulos, T. Khakhulin, J. Starck,
L. Agapito, and M. Nießner, “Humanrf: High-fidelity neural radi-
ance fields for humans in motion,” arXiv preprint arXiv:2305.06356,
2023.

[31] W. Xian, J.-B. Huang, J. Kopf, and C. Kim, “Space-time neural
irradiance fields for free-viewpoint video,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 9421–9431.

[32] B. Attal, E. Laidlaw, A. Gokaslan, C. Kim, C. Richardt, J. Tompkin,
and M. O’Toole, “Törf: Time-of-flight radiance fields for dynamic
scene view synthesis,” Advances in Neural Information Processing
Systems, vol. 34, pp. 26 289–26 301, 2021.

[33] Z. Li, S. Niklaus, N. Snavely, and O. Wang, “Neural scene flow
fields for space-time view synthesis of dynamic scenes,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 6498–6508.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, JUNE 2023 12

[34] Y.-J. Yuan, Y.-K. Lai, T. Wu, L. Gao, and L. Liu, “A revisit of shape
editing techniques: From the geometric to the neural viewpoint,”
Journal of Computer Science and Technology, vol. 36, no. 3, pp. 520–
554, 2021.

[35] Z. Zheng, T. Yu, Q. Dai, and Y. Liu, “Deep implicit templates for
3d shape representation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 1429–1439.

[36] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein,
“Implicit neural representations with periodic activation func-
tions,” Advances in Neural Information Processing Systems, vol. 33,
pp. 7462–7473, 2020.

[37] F. Xiang, Z. Xu, M. Hasan, Y. Hold-Geoffroy, K. Sunkavalli, and
H. Su, “Neutex: Neural texture mapping for volumetric neural
rendering,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 7119–7128.

[38] C. Wang, M. Chai, M. He, D. Chen, and J. Liao, “Clip-nerf:
Text-and-image driven manipulation of neural radiance fields,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 3835–3844.

[39] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black,
“Smpl: A skinned multi-person linear model,” ACM Transactions
on Graphics (TOG), vol. 34, no. 6, pp. 1–16, 2015.

[40] S. Peng, J. Dong, Q. Wang, S. Zhang, Q. Shuai, X. Zhou, and
H. Bao, “Animatable neural radiance fields for modeling dynamic
human bodies,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2021, pp. 14 314–14 323.

[41] J. Chen, Y. Zhang, D. Kang, X. Zhe, L. Bao, X. Jia, and H. Lu,
“Animatable neural radiance fields from monocular rgb videos,”
arXiv preprint arXiv:2106.13629, 2021.

[42] L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, and
C. Theobalt, “Neural actor: Neural free-view synthesis of human
actors with pose control,” ACM Transactions on Graphics (TOG),
vol. 40, no. 6, pp. 1–16, 2021.

[43] G. Gafni, J. Thies, M. Zollhofer, and M. Nießner, “Dynamic neural
radiance fields for monocular 4d facial avatar reconstruction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 8649–8658.

[44] J. Sun, X. Wang, Y. Zhang, X. Li, Q. Zhang, Y. Liu, and J. Wang,
“Fenerf: Face editing in neural radiance fields,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 7672–7682.

[45] Y. Hong, B. Peng, H. Xiao, L. Liu, and J. Zhang, “Headnerf: A
real-time nerf-based parametric head model,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 20 374–20 384.

[46] Y. Guo, K. Chen, S. Liang, Y.-J. Liu, H. Bao, and J. Zhang, “Ad-nerf:
Audio driven neural radiance fields for talking head synthesis,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 5784–5794.

[47] Y.-J. Yuan, Y.-T. Sun, Y.-K. Lai, Y. Ma, R. Jia, and L. Gao, “Nerf-
editing: geometry editing of neural radiance fields,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 18 353–18 364.

[48] Y. Endo, “User-controllable latent transformer for stylegan image
layout editing,” in Computer Graphics Forum, vol. 41, no. 7. Wiley
Online Library, 2022, pp. 395–406.

[49] X. Pan, A. Tewari, T. Leimkühler, L. Liu, A. Meka, and C. Theobalt,
“Drag your gan: Interactive point-based manipulation on the
generative image manifold,” in ACM SIGGRAPH 2023 Conference
Proceedings, 2023, pp. 1–11.

[50] P. Ling, L. Chen, P. Zhang, H. Chen, and Y. Jin, “Freedrag:
Point tracking is not you need for interactive point-based image
editing,” arXiv preprint arXiv:2307.04684, 2023.

[51] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840–6851, 2020.

[52] C. Mou, X. Wang, J. Song, Y. Shan, and J. Zhang, “Dragondiffusion:
Enabling drag-style manipulation on diffusion models,” arXiv
preprint arXiv:2307.02421, 2023.

[53] X. Chen, L. Huang, Y. Liu, Y. Shen, D. Zhao, and H. Zhao, “Any-
door: Zero-shot object-level image customization,” arXiv preprint
arXiv:2307.09481, 2023.

[54] Y. Shi, C. Xue, J. Pan, W. Zhang, V. Y. Tan, and S. Bai, “Dragdif-
fusion: Harnessing diffusion models for interactive point-based
image editing,” arXiv preprint arXiv:2306.14435, 2023.

[55] Z. Li, R. Tucker, N. Snavely, and A. Holynski, “Generative image
dynamics,” arXiv preprint arXiv:2309.07906, 2023.

[56] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in European Conference on Computer Vision. Springer,
2020, pp. 402–419.

[57] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revis-
ited,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 4104–4113.

[58] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in The Thrity-Seventh
Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2.
Ieee, 2003, pp. 1398–1402.

[59] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 586–595.

[60] K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du, D. Duckworth, D. J.
Fleet, D. Gnanapragasam, F. Golemo, C. Herrmann et al., “Kubric:
A scalable dataset generator,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022, pp. 3749–
3761.

[61] J. Yang, M. Gao, Z. Li, S. Gao, F. Wang, and F. Zheng,
“Track anything: Segment anything meets videos,” arXiv preprint
arXiv:2304.11968, 2023.

[62] W. Sun, A. Tagliasacchi, B. Deng, S. Sabour, S. Yazdani, G. E. Hin-
ton, and K. M. Yi, “Canonical capsules: Self-supervised capsules in
canonical pose,” Advances in Neural information processing systems,
vol. 34, pp. 24 993–25 005, 2021.

[63] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Transactions on Graphics (ToG), vol. 41, no. 4, pp. 1–15, 2022.

[64] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d
gaussian splatting for real-time radiance field rendering,” ACM
Transactions on Graphics (ToG), vol. 42, no. 4, pp. 1–14, 2023.

Chengwei Zheng received both his B.S. degree
and Ph.D. degree in software engineering from
Tsinghua University, Beijing, China, in 2018 and
2023, respectively. He is currently a postdoc at
the Advanced Interactive Technology lab at ETH
Zürich. His research interests include dynamic
reconstruction and 3D animation.

Wenbin Lin received a B.S. degree in Depart-
ment of Automation, Tsinghua University, Bei-
jing, China, in 2020. He is currently working to-
ward a Ph.D. degree in the School of Software,
Tsinghua University. His research interests in-
clude 3D human digitalization, dynamic recon-
struction, and 3D animation.

Feng Xu received a B.S. degree in physics from
Tsinghua University, Beijing, China, in 2007 and
Ph.D. in automation from Tsinghua University,
Beijing, China, in 2012. He is currently an as-
sociate professor in the School of Software, Ts-
inghua University. His research interests include
face animation, performance capture, and 3D
reconstruction.

