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Abstract

RGBD-based real-time dynamic 3D reconstruction suf-
fers from inaccurate inter-frame motion estimation as er-
rors may accumulate with online tracking. This problem
is even more severe for single-view-based systems due to
strong occlusions. Based on these observations, we propose
OcclusionFusion, a novel method to calculate occlusion-
aware 3D motion to guide the reconstruction. In our tech-
nique, the motion of visible regions is first estimated and
combined with temporal information to infer the motion of
the occluded regions through an LSTM-involved graph neu-
ral network. Furthermore, our method computes the con-
fidence of the estimated motion by modeling the network
output with a probabilistic model, which alleviates untrust-
worthy motions and enables robust tracking. Experimental
results on public datasets and our own recorded data show
that our technique outperforms existing single-view-based
real-time methods by a large margin. With the reduction of
the motion errors, the proposed technique can handle long
and challenging motion sequences. Please check out the
project page for sequence results: https://wenbin-
lin.github.io/OcclusionFusion.

1. Introduction

Dynamic 3D reconstruction has been attracting more and
more attention with the development of sensing and com-
puting techniques. It aims to reconstruct the shape, motion,
and appearance of the recorded objects, and thus enables
users to record, edit, animate, and play with real 3D targets
for various applications, including 3D design, video games,
telecommunications, virtual reality, and augmented reality.

In dynamic 3D reconstruction with RGB-D sensors,
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Figure 1. Our method can reconstruct dynamic objects in real time.

fusion-based works [5,6, 16, 19,30] have achieved impres-
sive results in recent years and have become a new techno-
logical trend with several important features. Firstly, these
techniques do not require geometry templates of the target
objects but fuse the geometries online with the recording.
Therefore, they can handle various targets, including hu-
mans, objects, and even 3D scenes [8,44]. Secondly, they
can handle both rigid and nonrigid motions without requir-
ing class-specific motion priors. This is also important to
increase the generalization capability of 3D reconstruction.
Thirdly, they can be achieved in real time and with a single
consumer sensor, which makes these techniques be easily
used by end-users.

In single view-based solutions, there is a significant qual-
ity gap between online and offline methods. On the online
side, existing methods use iterative geometry fitting [30],
sparse image feature matching [19], or photometric con-
strains [16] to estimate object motions. However, these
real-time techniques cannot give very reliable temporal cor-
respondences, and thus the accuracy of motion estimation
is limited. With the error accumulation, these techniques
tend to fail to track long sequences or challenging motions.
On the other hand, offline methods can build much more
accurate temporal correspondences without considering the
computation complexity [5, 6], which leads to much better
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reconstruction results.

We propose OcclusionFusion, which fills the quality gap
between online and offline methods with real-time perfor-
mance (Fig. 1) and the state-of-the-art accuracy even com-
pared to offline methods. This is accomplished by better
and efficiently exploring the spatial and temporal motion
priors. For single view-based 3D dynamic reconstruction,
occlusion is one key obstacle as the occluded regions need
to be reconstructed without motion observations. On the
other hand, we know that the occluded regions do not move
arbitrarily. The motion of the visible regions and the histor-
ical motion information give strong prior knowledge to con-
strain the motion estimation of the occluded regions. Based
on this observation, we propose to train a neural network to
estimate full 3D motions of whole objects including the oc-
cluded surfaces using the motions of the visible regions as
well as the historical information. With the obtained full ob-
ject motion between consecutive frames, we do not require
either exhaust correspondence computation like DeepDe-
form [6] or long range correspondences between multiple
frames like Bozic et al. [5]. Either of them involves heavy
computation costs that hinder real-time performance.

To estimate the motion of the occluded regions, we pro-
pose to train a light-weight graph neural network. The graph
neural network integrates both the motion of the visible re-
gion by the graph structure and the historical information
by involving a long short-term memory (LSTM) [17] mod-
ule. Recent work 4DComplete [23] predicted the motion
beyond the observable regions by a 3D convolution-based
neural network. However, the 3D convolution module re-
quires high computation and memory costs, which prevents
their method from achieving real-time performance.

Furthermore, we model the per graph node motion using
a Gaussian distribution, which not only improves the ac-
curacy of motion prediction but also provides a confidence
to aid the reconstruction module. With the confidence, we
down-weight untrustworthy motion and improve the robust-
ness of the reconstruction system.

In summary, the contributions lie in three aspects:

* We proposed a robust real-time dynamic 3D recon-
struction system with a light-weight graph neural net-
work for full 3D motion estimation. Various results
including the one on public benchmark show that our
real-time system outperforms the state-of-the-art of-
fline methods.

e The graph neural network involves LSTM structure
to leverage both the spatial and temporal information
to predict the full object motion accurately and effi-
ciently.

* Per node motion confidence is estimated by model-
ing the predicted motion using a Gaussian distribution,
which gives more information for the reconstruction
system to achieve high robustness.

2. Related Work
2.1. RGB-D Based Dynamic Reconstruction

Reconstruction of non-rigid deforming objects using a
single RGB-D camera is an important research area in com-
puter vision and graphics. Free-form capture [5, 6, 16, 19,

,35,36] does not assume any geometric prior and can re-
construct general non-rigid scenes.

DynamicFusion [30] is the pioneering work that ables
to capture non-rigid scenes in real-time by a hierarchical
node graph structure and an efficient GPU solver. However,
DynamicFusion did not utilize any visual cues from color
images and cannot track the target robustly. VolumeDe-
form [19] introduced a grid structure to represent the object
deformation and used sparse SIFT [27] features to improve
the registration quality. Guo et al. [16] proposed a joint ge-
ometry, albedo, and motion field optimization pipeline to
obtain a higher quality. KillingFusion [35] and SobolevFu-
sion [36] are able to handle topology changes but cannot
recover space-time correspondences along the whole input
sequence. DeepDeform [6] and Bozic et al. [5] leveraged
learning-based correspondences to improve the ability to
handle fast motions. However, the exhaust correspondences
prediction process of DeepDeform, and the multi-frame
matching strategy of Bozic et al. [5] are time-consuming
and hinder the reconstruction system from real-time. Other
methods use a multi-camera setup like Fusion4D [11] or
high frame-rate depth cameras like Motion2Fusion [10] to
improve the reconstruction results. However, the equipment
is difficult to access by average consumers. We present
a novel real-time dynamic reconstruction method that can
handle challenging motion with occlusion using only a sin-
gle consumer depth sensor.

2.2. Learning-based Motion Estimation

In recent years, learning-based motion estimation meth-
ods have shown great superiority compared with hand-craft
image features like SIFT [27] and SURF [2] as well as
hand-crafted geometry descriptors [14,20,32,33,40]. Op-
tical flow [9, 18, 25, 38, 39] and scene flow [3, 26, 28, 42]
methods achieve promising results in dense motion estima-
tion. DeepDeform [0] trained a delicate network to estimate
sparse temporal correspondences for pixels by using the
corresponding patch information. Bozic et al. [5] imposed
dense optical flow to the reconstruction system, which is
much more efficient than DeepDeform. However, the meth-
ods mentioned above only predict the motion of the visible
part. Recently, 4DComplete [23] created a synthetic anima-
tion dataset called DeformingThings4D and proposed the
first approach that predicts motion beyond the observable
surface. However, its 3D convolution module is computa-
tionally intensive and cannot be applied to real-time scenar-
ios like our method.
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Figure 2. Pipeline of complete node motion estimation. Given input RGB-D images at frame ¢ and ¢ + 1 as well as the complete node
graph at frame ¢, we first use a neural network to estimate the 2D optical flow between the input image pair. Then, we combine the 2D
optical flow and the depth images to compute the 3D motion of visible nodes. The graph neural network uses both the motion of the visible
nodes and the complete node graph as input. Meanwhile, the graph neural network integrates the historical node motion by involving an
LSTM module to estimate complete node motion and per node confidence. The color encoding of optical flow is from [1].

2.3. Graph Neural Networks

Graph Neural Networks (GNNs) can model non-
Euclidean data structure and have been applied to var-
ious scenarios like social networks [43], protein-protein
interaction prediction [13], 3D pointcloud analysis [41],
etc. Among existing works, graph convolutional networks
(GCN) [21] performed spectral convolutions on graphs to
propagate information among nodes. Graph U-Net [15]
proposed graph pooling and unpooling operations based on
trainable similarity measurements. Li et al. [22] leveraged
residual connections to train deeper GNN and solve the
problem of vanishing gradient and over-smoothing. Shi et
al. [34] adopted multi-head attention to the message passing
of graph learning. We adopt the skip connection in [22] and
graph transformer module in [34] in our network. Similar
to Graph U-Net, our method constructs a graph pyramid,
while the feature upsampling and downsampling process of
our approach is precomputed and untrainable.

3. Method

We build a single-view RGB-D based dynamic 3D re-
construction system which reconstructs a volumetric model
and solves non-rigid surface motion frame-by-frame. The
output motion is parameterized by the deformation of a
node graph. To handle the motion tracking of the occluded
nodes, we design an occlusion-aware motion estimation
network (Sec. 3.1). The network infers the motion and the
motion confidence of the whole node graph based on spatial
and temporal motion observation. The pipeline of complete
node motion estimation is demonstrated in Fig. 2. Given
an input RGB-D image and the node graph of the current
reconstructed model, we first estimate the 2D optical flow
from the previous image to the current input image with

a neural network. Then, with the 2D optical flow and the
depth images, we compute the 3D motion of the visible
nodes. Both the 3D motion of the visible nodes and the
complete node graph are fed to the graph neural network.
Meanwhile, we involve an LSTM module to integrate the
historical motion of the nodes, which carries temporal in-
formation to the graph neural network. Finally, the graph
neural network predicts full node motion with per node con-
fidence. With the predicted node motion and the confidence,
we further optimize the deformation parameters of graph
nodes and build a robust non-rigid reconstruction system
(Sec. 3.2).

3.1. Occlusion-aware Motion Estimation Network

We use the graph-based representation proposed in [37]

to parameterize object motion with sparse graph nodes. The
graph nodes are uniformly sampled on the object surface.
Points on the object surface are driven by the deformation
of the graph nodes. However, with a single-view RGB-D
camera, the motion of graph nodes is hard to solve when
occlusions occur. To solve this problem, we propose an
occlusion-aware motion estimator using a graph neural net-
work.
Network Architecture. The graph neural network con-
ducts message passing among nodes based on the node con-
nectivity of the input node graph. As shown in Fig. 2, the
goal of the graph neural network is to predict the motion
of the whole node graph with per node confidence. The
network’s input contains the complete graph structure, the
motion of the visible nodes, and the motion of the historical
frames.

Specifically, the input node feature includes the node’s
3D position and the 3D motion if the node is visible. For
the occluded nodes, we assign their motion as zeros. Be-



sides, we add an extra dimension to indicate the node’s vis-
ibility. The value will be 1 for visible and O for occluded. In
addition, we extract the rigid motion from the total motion
by computing a rigid transformation in SE(3) based on the
motion of the visible nodes. Therefore, the neural network
only needs to predict the non-rigid motion.

As the observation of a single frame is not strong enough
to constrain the occluded motion, we combine the historical
motion and the observation of the current frame to compute
the features of the graph nodes. To integrate historical mo-
tion, we maintain a motion state for each node by involving
an LSTM module. For each node, the LSTM uses the esti-
mated historical motion and confidence to predict the node
motion and confidence at the current frame.

To model 3D node motion with confidence, we use a
Gaussian distribution with diagonal covariance N (s, 02 I)
to represent the motion of each node, where p is the pre-
dicted 3D motion, o is the standard deviation used to reflect
the confidence.

For message passing among nodes, we construct a multi-
scale graph pyramid {G1,Go,Gs3,G4} based on the input
node graph. The network contains node feature downsam-
pling, upsampling and skip connection between the same
level of the pyramid like Graph U-Net [15]. The basic graph
convolution module is the graph transformer proposed by
Shi et al. [34]. Besides, we add a residual connection to the
graph convolution module like Li et al. [22]. More details
of the network can be found in the supplemental document.
Network Training. To supervise the network training, we
model the target node motion with the predicted Gaussian
distribution and use a standard log-likelihood loss:

N
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where Og¢r, and Og,,pn are the parameters of the LSTM
module and the graph neural network, @, and o; are the
final outputs of the network, NV is the number of nodes in the
node graph, y, is the ground truth motion of the 7th node.
For temporal motion encoding of the LSTM module,
we impose another log-likelihood loss to the outputs of the
LSTM module:

Luomp(Oram) =~ S log (W (v | win0T)) . @
=1

where p; and o are the outputs of the LSTM module. Be-
sides, we find that truncating the minimum value of o; and
o} t0 0.1 leads to slightly better performance.

The total loss is a weighted combination of the above
two terms:

‘Ctotal = £0ut + O-LCtemp- (3)

3.2. Confidence Guided Non-Rigid Reconstruction

For non-rigid RGB-D reconstruction, we follow the clas-
sic volumetric pipeline that uses a truncated signed distance
field (TSDF) to store the canonical model and a motion field
to warp the canonical model to align it with the input image
sequence.

We use the graph-based representation proposed in [37]
to parameterize the non-rigid motion. The motion field
W can be and represented by a deformation graph G =
{[p;, T:]}, where p, € R3 is the position of the ith node,
T, € SE(3) is the transformation of the ith node. The
motion field can be computed by convex combinations of
neighboring nodes’ transformations.

Given the reconstructed model M1 and the input
RGB-D image pair {C!~!,D!"1} and {C!, D'}, we opti-
mize the following energy to solve W!.

t
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For the depth term Eqepn, we employ dense point-to-
plane alignment between depth image D! and the warped
model:

Boopn = 3. (nl(/ —u'))?, )

(v,ut)eP

where v is a vertex on canonical model M, v’ is the warped
vertex given by W¢. w! is a 3D point projected from the
depth image D?, its normal is represented as 7,:. P is the
vertex pair set. We first render the warped model M*~! to
camera view at t — 1 and get the projected 2D coordinate
of all visible vertices. Let II be the projection function, for
II(v'), we use the computed 2D optical flow to find the cor-
responding pixel where TI(u') locates.

Based on the output motion and confidence of the neural
network, we constrain the motion field to be close to the
network’s prediction and construct a motion energy term as
follow:

_ 2
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where p; denotes the motion predicted by the neural net-
work at the ¢th node, w; is the weight computed through o;

and p;:
ko?
w; = exp (UZ 2) . 7N
(lleeilly +€)

Given the dense correspondences between consecutive
images, the 2D term constrains the projection of warped
vertices to be consistent with the correspondences of the 2D
optical flow:

Exp= ) [H() ). ®)

(v,ut)eP



E,g is the as-rigid-as-possible regularizer,
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where IV; denotes the neighboring nodes of the jth node.

After solving the motion field W*, we update the canon-
ical TSDF volume. If there is a region beyond the coverage
of the current node graph, new nodes will be inserted. For
details on geometry fusion and node graph extension, please
refer to DynamicFusion [30].

3.3. Implementation Details

Multi-scale Graph Pyramid Construction. Given a node
graph sampled on the object surface, we construct a multi-
scale graph pyramid by subsampling the nodes with differ-
ent node intervals. The nodes in the (I 4+ 1)th level are a
subset of the nodes in the /th level. The higher the level,
the larger the interval. As for the edges between nodes, we
compute k-nearest neighbors of each node in the Euclidean
space at the first level. Then we use the breadth-first search
on the graph to compute neighbors for higher levels. More
details can be found in the supplemental document.
Data Generation. Network training relies on the super-
vision of the full 3D motion of objects. We leverage the
DeformingThings4D [23] dataset, which contains 1,972 an-
imations spanning 31 categories of humanoids and animals.
To simulate the 3D reconstruction scenario, we first uni-
formly sample graph nodes on the object’s surface. Then,
we introduce a virtual camera that keeps the moving object
in the center of the rendered depth image. Once a graph
node is visible to the camera, the node will be added to an
observed node set A/. Therefore, the number of the ob-
served nodes will increase over time. For frame ¢ we build a
graph pyramid of the current observed node set N'*. Based
on the nodes’ visibility, A" can be divided into N and
NE.. For each node, we compute the 3D displacement be-
tween temporally adjacent frames as its motion, and only
the motion of NV is fed to the network. In addition, we
randomly resize the objects into a 3D bounding box rang-
ing from Im X 1m X 1m to 2m X 2m X 2m, which is a
common volume for dynamic reconstruction systems.
3D Reconstruction System. In the 3D reconstruction sys-
tem, we leverage state-of-the-art 2D optical flow prediction
method RAFT [39] to estimate the optical flow between the
input image pairs. As the input images contain depth in-
formation, we retrain the RAFT network with RGB-D four-
channel input on synthetic optical flow dataset Sintel [7],
FlyingThings3D [29], and Monkaa [29]. The extra depth
channel helps to achieve higher accuracy, especially when
motion blur occurs in the color images. The choice of 2D
optical flow methods is discussed in the supplemental doc-
ument. Then, with the help of depth images, we compute
the visibility of graph nodes and backproject the 2D image

Method EPE(mm)
Rigid Fitting 15.47
ARAP Deformation [37] 4.39
Ours w/o temporal motion 4.02
Ours w/o log-likelihood loss 4.07
Ours 3.75
Ours + post-processing 3.28

Table 1. Motion estimation results of the occluded nodes.

Method Geo. error  Def. error
DynamicFusion [30] 1.078 6.179
Online VolumeDeform [19] 7.485 20.841
Ours w/o motion term 0.406 3.154
Ours 0.386 2.800
. DeepDeform [6] 0.416 3.152
Offfine 5 Jic et al. [5] 0.403 2.872

Table 2. Results on the DeepDeform [6] non-rigid reconstruction
benchmark. The geometry error evaluates the difference between
the reconstructed model and the input depth image. The deforma-
tion error evaluates the consistency between the motion tracking
results and manually annotated correspondences. All values are in
cm.

coordinate to 3D space to obtain the 3D motion of the vis-
ible nodes. For the 3D motion of the historical frames, we
use the output of the 3D reconstruction system rather than
the network’s output, as it integrates more constraints and is
usually more accurate.

4. Experiments

In this section, we first present the performance and pa-
rameters of our system (Sec. 4.1). Then, we evaluate the
accuracy of the occlusion-aware motion prediction network
(Sec. 4.2). Next, we evaluate the dynamic reconstruction
system quantitatively and qualitatively (Sec. 4.3). Finally,
in our accompanying video, we show sequence results to
fully demonstrate the power of our technique.

4.1. Performance and Parameters

Our system is implemented on a computer with an In-
tel i7-10700 CPU, 32 GB RAM, and two NVIDIA RTX
GeForce 2080Ti graphics cards. We use an Azure Kinect
DK to record RGB-D sequences at 30 fps. The depth and
color images are aligned and resized to 640 x 480. The full
pipeline runs in real time at about 36ms per frame, where
the neural network-based motion prediction takes 13ms,
warp field solving takes 16ms, and 7ms for model update,
marching cubes, and anything else. The 2D optical flow es-
timation step takes about 26ms on another graphics card.
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Figure 3. Qualitative comparisons with DynamicFusion [30] and
Guo et al. [16] on the DeepDeform dataset.

Since we have made the two steps in a pipeline, our system
achieves real-time performance but with a one-frame delay.

The weights in Eq. 4 are empirically set as Agepth =
1, Amotion = 2, Aop = le — 6, A\reg = 5. Kk and € in Eq. 7
are set to 4 and lcm.

4.2. Experiments of Motion Prediction

We evaluate the accuracy of motion prediction on the De-
formingThings4D [23] dataset. Given a node set AV, its sub-
set of visible nodes of a given camera viewpoint, and the 3D
motion of the visible nodes, the goal is to estimate the mo-
tion of the occluded nodes. Following 4DComplete [23],
we use rigid fitting and as-rigid-as-possible (ARAP) defor-
mation as baselines to compare with ours. The rigid fitting
approach estimates the occluded motion by a global rigid
transformation estimated by the visible motion. The ARAP
deformation approach leverages local rigidity and the mo-
tion of visible nodes to optimize the occluded motion. Here
we use a graph-based ARAP deformation proposed by [37].
For evaluation, we randomly choose 100 animations from
the animal motion subset, which are never used during train-
ing, and we apply the average 3D end-point-error (EPE)
over all 100 sequences as the metric.

Comparisons. The results are reported in Tab. 1. Rigid
fitting gives the worst result because there are large non-

Bozic et al. Ours

DeepDeform
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Figure 4. Qualitative comparisons with DeepDeform [6] and
Bozic et al. [5] on the DeepDeform dataset. Results of DeepDe-
form and Bozic et al. [5] come from the video of Bozic et al. [5].

rigid motions in the test sequences. ARAP deformation
cannot give good results either because it only considers lo-
cal rigidity priors. On the other hand, we achieve the best
performance because we explore multi-scale motion priors
through the graph pyramid structure. Like 4DComplete,
we find that employing optimization-based post-processing
with ARAP prior further improves the results.
Evaluations. Furthermore, we train the network without
the temporal motion integrated by the LSTM, and the error
increases, which verifies the effectiveness of the temporal
motion. In addition, we use mean-squared error (MSE) loss
instead of log-likelihood loss based on per node Gaussian
distribution to train the network, and the error is also larger.
In this case, the MSE loss is equivalent to the log-likelihood
loss with a fixed o for every node. As the motion uncertain-
ties of the visible nodes and the occluded nodes are obvi-
ously different, we believe using per node Gaussian distri-
bution to model the node motion is more appropriate. Note
that the network is trained only with humanoid motions. It
still performs well on animal sequences, which shows the
strong generalization ability of the network.

Since the data preprocessing and network training of
4DComplete [23] are not yet publicly available, we are
not able to make a direct comparison with their method.
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Figure 5. Geometry errors on the top sequence of Fig. 6. The
average geometry errors over the whole sequence are 7.68mm,
4.01lmm, 3.58mm, and 3.45mm from Guo et al. [16] to Ours.

According to the results in Tab. 1, our approach outper-
forms ARAP deformation by a large margin, which is sim-
ilar to 4DComplete. However, our light-weight neural net-
work takes only 13ms for motion and confidence prediction,
while 4DComplete takes approximate 3s and cannot predict
confidence, which is important guidance for 3D dynamic
reconstruction as indicated in our experiments (Sec .4.3.2).

4.3. Experiments of Dynamic Reconstruction

We evaluate our method on the public non-rigid recon-
struction benchmark of the DeepDeform [6] dataset. We
first compare our method with the state-of-the-art of both
online and offline solutions. Then we perform ablation stud-
ies to evaluate our key components. Finally, we show more
reconstruction results of our system.

4.3.1 Comparisons

The results are shown in Tab. 2. We can see that there
is a big accuracy gap between the existing online [19, 30]
and offline [5, 6] methods, indicating it is difficult to im-
prove the accuracy in the online scenario. With the help of
the light-weight full motion estimation and confidence pre-
diction, our method fills this gap and even outperforms the
state-of-the-art offline methods [5, 6] with real-time perfor-
mance.

As Guo et al. [16] did not evaluate errors on the DeepDe-
form [6] non-rigid reconstruction benchmark, we conduct a
numerical comparison on a sequence from the DeepDeform
dataset on our own. The geometry error of all the frames
in the sequence is shown in Fig. 5. Our approach keeps the
geometry error low throughout the sequence, while Guo et
al. [16] has difficulty tracking the fast motion in the second
half of the sequence.

For qualitative evaluation, we show comparisons with
online methods DynamicFusion [30] and Guo et al. [16] in
Fig. 3 and offline methods DeepDeform [6] and Bozic et

Input w/0 motion term w/o temporal Ours

Figure 6. Ablation study on Fmotion and temporal information.
Both sequences are from the DeepDeform dataset.

al. [5] in Fig. 4. Our method handles faster motion much
better than the online methods and aligns better with the in-
put images than the offline methods.

4.3.2 Ablation Studies

We evaluate three key components of our technique regard-
ing their contributions to the 3D dynamic reconstruction.

Complete Node Motion. We remove the complete node
motion constrain E,otion and show qualitative reconstruc-
tion results in Fig. 6. In each group of the results, the re-
constructed models at ¢ are almost the same. After a few
frames, the reconstruction results with the E,,otion term are
significantly better than the unused ones. Specifically, the
body parts occluded at ¢; fail to be tracked by the method
without Fotion term. Moreover, the geometry error curve
shown in Fig. 5 indicates that without the E\ o¢i0n term, the
geometry error rises frequently, which is majorly caused by
occlusions. For more comparison, the results in Tab. 2 show
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Figure 8. More reconstruction results of our method.

that removing Fipoti0on term leads to higher reconstruction
error. These comparisons verify that the 3D full motion
helps the reconstruction system track the occluded regions.
Temporal Information. We investigate the effectiveness
of the temporal information used in the graph neural net-
work, and show the comparisons in Fig. 6. The body parts
occluded at ¢; are not well tracked without the temporal in-
formation. When a moving arm is largely occluded, with
only the motion of the visible upper arm, it is still hard to
estimate the motion accurately. Involving the historical mo-
tion helps to improve the motion prediction. Besides, results
in Fig. 5 show that removing the temporal information also
brings higher geometry error.

Per Node Confidence. To show the importance of the per

node confidence, we visualize the predicted standard devia-
tion o on the reconstructed object’s surface in the side view
(from right to left) and the corresponding results in Fig. 7.
At tg, the left side of the body is occluded, and the pre-
dicted o of this region is significantly higher than that of
the visible region, which indicates the corresponding mo-
tion is more uncertain. As the left side of the body keeps
occluded in a few frames, the inaccurate motion causes er-
ror to accumulate over time in the results without consider-
ing the confidence. The method with per node confidence
down-weights the untrustworthy motion and brings better
reconstruction results.

4.3.3 More Results

We show more reconstruction results of our method in
Fig. 8. Ours reconstruction system is able to handle vari-
ous types of targets because the neural network is trained
on a dataset that includes a rich set of non-rigid objects.

5. Limitations

Although our method improves the quality of motion
tracking by introducing a graph-based full motion predic-
tion network, there are still some failure cases. First, our
method cannot handle topology change, which is an open
problem for node-graph-based reconstruction systems. In-
correct connections in the deformation graph can lead to
tracking failures. Possible solutions could be leveraging
the advantage of tracking-free reconstruction methods like
POSEFusion [24], or using neural networks to predict the
positions and connections of the graph nodes like Bozic et
al. [4]. Besides, if a part of the object is occluded for a
long time and has large non-rigid motion, it is hard for our
method to re-track it when it becomes visible again.

6. Conclusion

We propose OcclusionFusion, a single-view RGB-D
based real-time dynamic 3D reconstruction method that
outperforms the current online techniques by a large mar-
gin. We use a complete 3D motion field to guide the ob-
ject reconstruction and tracking, where the motion of the
occluded regions is estimated online by a pre-trained light-
weight graph neural network. The graph neural network
combines the motion of visible regions and temporal infor-
mation by involving an LSTM structure to accurately and
efficiently predict the complete object motion. Moreover,
the graph neural network predicts confidence together with
the motion by modeling the network output as a Gaussian
distribution, which effectively enhances the robustness of
the reconstruction system. Experimental results show that
long and challenging sequences can be tracked well in real
time using our technique with a single view input.
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A. Network Details

We first show the details in the network architecture, in-
cluding the LSTM-based temporal motion encoding and the
graph neural network. Then, we show the details in the net-
work training. The neural network is implemented using the
PyTorch [31] and PyTorch Geometric [12] libraries.

A.l. Architecture Details

LSTM-based Temporal Motion Encoding. The input and
output motion of the LSTM module are represented using
Gaussian distribution with diagonal covariance N (u, 02 I),
where € R3,0 € R. The LSTM module is a standard
two-layer LSTM with a hidden feature dimension of 32.
Then we use a fully connected layer to predict the ' and o’
based on the output feature of the LSTM.

Graph Neural Network. We show the architecture of the
graph neural network in Fig. 9 and the architectures of the
graph pyramid convolution and the GConv block in Fig. 10
and Fig. 11. The graph transformer is proposed by Shi et
al. [34]. For all the dropout blocks, the drop probability
is 0.1. NN, denotes the number of nodes in the ith level of
the graph pyramid. The dimensionality of the input node
feature is 11. It contains three dimensions of node posi-
tion, three dimensions of node motion of the current frame,
one dimension of the visibility, and four dimensions of the
output p’ and ¢’ from the LSTM module. Then the out-
put motion vectors (¢ and o) of the graph neural network
will be used as the input historical motion vectors for future
frames.

A.2. Training Details

Loss Function. The log-likelihood loss based on per node
Gaussian distribution can be transformed as follow:

log (N (y; | pyy 071))
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where C7, Cs are constants. Therefore the loss function can
be simplified as:
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Thus, if the o; is a fixed value, the loss is equivalent to the
mean-squared error (MSE) loss.

Training Procedure. The whole network is trained end-
to-end. The LSTM module takes the historically predicted

11

motion as input, while the predicted motion is not accurate
enough at the beginning. So we use the ground truth histori-
cal motion with o = 0 to warm up the network training. We
first train the network using ground truth historical motion
for 200 epochs. Then, we switch the input historical motion
to the network’s output and train for another 1200 epochs.
Besides, the input historical motion vectors are treated as
undifferentiable constants and detached from the computa-
tion graph. Thus the gradients of the LSTM module do not
flow back to the graph neural network. We train the network
using the Adam optimizer with a learning rate of 0.001 and
a batch size of 64. The whole training process takes about
four days using an NVIDIA RTX GeForce 2080Ti GPU.

To quantitatively evaluate the generalization ability of
our network, we train the model on the humanoids subset
and test it on the animal subset for motion estimation in
Sec. 4.2. For other experiments, we use both subsets for
training to achieve better reconstruction results.

In addition, as the estimated 3D motion of the visible part
in the real world is not as perfect as the synthetic dataset,
we add random Gaussian noise to the visible motion during
network training. The noise is represented as A (u, o2 1),
where = [0,0,0] and o is sampled from a uniform dis-
tribution 2/ (—0.4, 0.4). However, in the motion prediction
evaluation in Sec. 4.2 we do not add any noise.

B. Details in Multi-scale Graph Pyramid Con-
struction

We construct a 4-level multi-scale graph for message
passing among nodes. Considering that the node connec-
tivity of the first level is computed based on the Euclidean
distance, which may lead to misconnections between unre-
lated parts, we discard edges by temporal consistency. More
precisely, if the distance between two nodes changes more
than a threshold, the edge between them will be discarded.

The node features downsampling between adjacent lev-
els is performed directly by copying the node features to the
higher level, as the nodes in the (I + 1)th level are a subset
of the nodes in the /th level. In feature upsampling, the node
features of the (I + 1)th level are assigned using the feature
of the nearest neighbor in the Ith level.

The intervals between nodes from the first to the fourth
level are set to {4cm, 8cm, 16cm, 32cm} and the neigh-
bor amounts are {8, 6,4,3}. Besides, the distance change
threshold is set to 4cm.

C. RGB-D Based Optical Flow Prediction

We use the RAFT [39] network to estimate 2D optical
flow. The original RAFT is trained with RGB images. We
change the input dimensionality from 3 to 4 and retrain the
network using RGB-D images as input. For the depth chan-
nel, we use the inverse depth (the reciprocal of depth) as
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Figure 11. Architecture of the GConv block.

input.

To speed up the 2D optical flow estimation in the 3D
reconstruction system, we resize the input images from
640 x 480 to 320 x 240 to compute the optical flow and
upsample the optical flow to the original resolution by bi-
linear interpolation.
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PWC-Net

RAFT-RGB  RAFT-RGBD RAFT-RGBD-noise

Figure 12. Results of different optical flow methods when motion
blur occurs.

D. Choice of Optical Flow

To test the robustness to flow estimation, we evaluate
our system using different optical flow settings PWC-Net
[38], RAFT-RGB and RAFT-RGBD. Besides, we further
add Gaussian noise of N'(0,4) pixels on z and y axes to
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Figure 13. Geometry errors on the top sequence of Fig. 6. The
average geometry errors over the whole sequence are 3.44mm,
3.79mm, 3.45mm, and 3.41mm from PWC-Net to RAFT-
RGBD-noise.
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Figure 14. Reconstruction results based on PWC-Net and RAFT-
RGB.

our RAFT-RGBD optical flow. We use the top sequence
of Fig. 6 for evaluation. The optical flow results at the
833rd frame of the sequence are shown in Fig. 12. We can
see severe motion blur occurs on the fast swinging arm in
the color image, and significant errors appear in the op-
tical flow of RGB-based methods (PWC-Net and RAFT-
RGB). However, since depth images do not suffer the blur
artifacts much and provide geometric information, RAFT-
RGBD generates reliable optical flow. This indicates the
benefit of involving depth in flow estimation.

For quantitative evaluation, we show the geometry errors
of different optical flow methods over the whole sequence
in Fig. 13. We can see that the geometry errors of our
reconstruction method based on PWC-Net, RAFT-RGBD,
and RAFT-RGBD-noise are all low and close to each other,
which indicates that our method is robust to noise in the
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optical flow. Only the reconstruction result based on the
RAFT-RGB optical flow provides a large geometry error,
which is caused by the tracking failure of the fast swinging
arm. We show the reconstruction results using PWC-Net
and RAFT-RGB at frame 837 (4 frames after the optical
flow shown in Fig. 12) in Fig. 14. The reconstruction re-
sult of PWC-Net is better than RAFT-RGB, although they
both provide a larger optical flow error. We believe the rea-
son for this is that the optical flow errors of PWC-Net ap-
pear mainly on the torso, while those of RAFT-RGB ap-
pear on the anterior segment of the arm. In addition, errors
on the torso are more easily corrected by the learned mo-
tion prior and the regularization term in the optimization,
because there is more motion information around the torso
region where the predicted optical flow is wrong.
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