
SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

A Self-occlusion Aware Lighting Model for
Real-time Dynamic Reconstruction

Chengwei Zheng, Wenbin Lin, and Feng Xu

Abstract—In real-time dynamic reconstruction, geometry and motion are the major focuses while appearance is not fully explored,
leading to the low-quality appearance of the reconstructed surfaces. In this paper, we propose a lightweight lighting model that
considers spatially varying lighting conditions caused by self-occlusion. This model estimates per-vertex masks on top of a single
Spherical Harmonic (SH) lighting to represent spatially varying lighting conditions without adding too much computation cost. The
mask is estimated based on the local geometry of a vertex to model the self-occlusion effect, which is the major reason leading to the
spatial variation of lighting. Furthermore, to use this model in dynamic reconstruction, we also improve the motion estimation quality by
adding a real-time per-vertex displacement estimation step. Experiments demonstrate that both the reconstructed appearance and the
motion are largely improved compared with the current state-of-the-art techniques.

Index Terms—albedo reconstruction, 3D dynamic reconstruction, spatially varying lighting, real-time reconstruction.

✦

1 INTRODUCTION

D YNAMIC reconstruction, aiming to reconstruct the shape,
motion, and appearance of the objects in the scene, is an

important task in computer vision and graphics. Recently, with the
development of depth sensing and parallel computing techniques,
this task can be achieved by a single RGB-D sensor in real
time [1], [2], [3], which may enable applications like telecom-
munications, VR/AR content generation, relighting, appearance
editing, and so on.

However, the accuracy of the current techniques is not satis-
factory due to the low-quality input and the strong assumptions to
achieve real-time performance. For example, existing methods [1],
[2] use motion graphs to represent the nonrigid surface motions,
which cannot model detail motions. Per-vertex displacements
could help to handle this; however, the input depth data is quite
noisy, and thus strong spatial and temporal regularization is re-
quired to estimate robust displacements for the vertices. This leads
to a large linear system that is difficult to be solved in real time.
Besides the geometry, to solve the appearance of the reconstructed
surfaces in real time, a single Spherical Harmonic (SH) is used to
model the lighting of all vertices on the surfaces [3]. However, this
is not true, especially for complex surface geometries containing
self-occlusions. As a consequence, the appearance can not be
correctly solved.

To deal with these problems, we propose a novel technique
that estimates more detailed surface motions and more accurate
surface albedos, still using a single consumer RGB-D sensor
and achieving real-time performance. On the motion aspect, we
propose a technique that uses the local motions of the previous
time step to build the regularization terms in solving the per-
vertex displacements of the current time step. Since the motions
of vertices in the previous time step are already known, the
displacements in this time step are all disentangled in the energy
function. And thus, the large linear system is replaced by many

• Chengwei Zheng, Wenbin Lin, and Feng Xu were with school of software
and BNRist, Tsinghua University, Beijing, China.
E-mail: zhengcw18@gmail.com, lwb20@mails.tsinghua.edu.cn,
xufeng2003@gmail.com

small linear systems, which can be solved in parallel with high
computation efficiency. On the appearance aspect, we propose
a lightweight masking technique to model the spatially varying
lighting condition of the reconstructed surface. This method
still uses a single SH to model the environment lighting, but
each vertex has an implicit mask to model the lighting changes
caused by self-occlusions. Combining with a novel optimization
framework, which uses the lighting model to construct the data
terms by considering the self-occlusion effects, the albedos of all
vertices can also be solved in parallel without affecting the real-
time performance.

The contribution of this paper lies in three aspects:

• For single view real-time dynamic reconstruction, we
propose a system that estimates more accurate surface
albedos as well as more detailed surface motions.

• Per-vertex displacements are solved in a very efficient
manner by building regularization with the historical data.

• Spatially varying lighting is modeled and used in albedo
solving by a masking technique with the ability to model
self-occlusions.

2 RELATED WORK

In this paper, we focus on reconstructing the geometry and albedo
of an object considering the self-occlusion effects, and we discuss
related techniques in this section.

2.1 Dynamic Reconstruction
Many methods have been proposed to reconstruct the geometry
and appearance of dynamic objects. High-quality appearance can
be generated using physical models [4], [5], [6]; however, these
methods usually require a large multi-view setup as well as
controlled lighting. Guo et al. [3] proposed a real-time method that
took a single-view RGB-D input to reconstruct geometry, surface
albedo, non-rigid motion, and low-frequency lighting in real time.
This method first uses an optimization-based framework to jointly
optimize motion and lighting, then updates the geometry and

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1. Live demos of our method for real-time albedo and geometry reconstruction. On the screen, the left shows the current geometry for the
currently recorded object pose, and the right shows the corresponding surface albedo.

albedo model by fusing the current color and depth maps into the
model. Our method share the same setup as [3], while our method
outperforms [3] in both geometry and albedo reconstructions as
shown in Section 4.3. Dou et al. [7] presented a 360 performance
capture system that enabled the real-time reconstruction of non-
rigid scenes. Du et al. [8] proposed a solution toward real-time
seamless texture montage build by leveraging geodesics-guided
diffusion and temporal texture fields. Guo et al. [9] presented
a volumetric capture system for photo-realistic and high-quality
relightable full-body performance capture. Zheng and Xu [10]
reconstructed the high-quality dynamic texture of general dynamic
objects. Other methods also achieved reconstruction with dynamic
texture [11], [12], [13]. Besides, some works focused on geometry
and reflectance reconstruction of human faces based on parametric
models [6], [14], [15], [16].

Recently, deep learning techniques provide new opportunities
to capture the appearance of dynamic objects, especially for hu-
man faces [17], [18], [19], [20], [21] and human bodies [22], [23].
For instance, Saito et al. [17] represented fine-scale texture details
of human faces based on mid-layer feature correlations from a
convolutional neural network. Martin-Brualla et al. [22] produced
high-resolution and high-quality images of the human bodies using
a deep architecture in real time. Pandey et al. [23] proposed an
end-to-end framework to synthesize renderings of humans in free-
viewpoints using a single RGB-D camera. Although deep learning
reconstruction techniques are able to generate high-quality results,
they are restricted to specific objects, and a wide variety of objects
remains unexplored. Some networks are also too heavy to run in
real time. Our proposed method aims to reconstruct the detailed
geometries and high-quality albedos of general dynamic objects
using only a single RGB-D camera and in real time, which can be
a difficult task for the methods above.

2.2 Intrinsic Decomposition

To decompose a color image into reflectance and shading,
optimization-based methods usually build energy terms with as-
sumptions and priors on reflectance [24], [25], [26]. Methods
based on the Retinex algorithm dealt with this problem by
assuming that large image gradients and small gradients were
respectively caused by reflectance and shading [27], [28]. Barron
and Malik [29], [30] recovered shape, albedo, and illumination
from a single image using a combination of priors. Bi et al. [31]
introduced an image transform based on the L1 norm for piece-
wise image flattening and further for complex scene-level intrinsic
image decomposition. Cheng et al. [32] regularized intrinsic de-
composition with the aid of near-infrared imagery and proposed
priors.

In addition to RGB images, Some methods also made use
of depth maps from an RGB-D camera to decompose the color
images [33], [34], [35], [36]. Jeon et al. [34] combined a texture-
aware image model and a surface normal based constraint from
an RGB-D image to improve the results. Hachama et al. [35]
reconstructed the surface from a single or multiple RGB-D images
of a static scene with a data term, which was related to the image
formation process and expressed the relation between different
components, and a regularity term, which contained an efficient
combination of two regularizers on the illumination vector field
and albedo. Wei et al. [36] further took advantage of physical
principles from inverse rendering and achieved high accuracy with
real-time performance. Besides, intrinsic video decomposition
methods were able to separate a video stream into reflectance and
shading layers [37], [38], [39], [40].

Based on provided data sets [27], [41], [42], [43], [44], [45],
some deep learning intrinsic image decomposition methods were
proposed to estimate reflectance [46], [47], [48], [49], [50]. Cheng
et al. [51] treated image decomposition as an image-to-image
transformation problem and developed a multi-channel architec-
ture that learned the transformation function in successive fre-
quency bands in parallel. Liu et al. [52] proposed an unsupervised
intrinsic image decomposition framework, which directly learned
the latent feature of reflectance and shading from unsupervised
and uncorrelated data. As reflectance is related to the surface
normal, several methods also estimated surface normal to improve
the performance. Sengupta et al. [53] presented an end-to-end
learning framework for producing an accurate decomposition of
an unconstrained human face image into shape, reflectance, and
illuminance. Kanamori and Endo [54] inferred albedo, shape, and
illumination from a human portrait with light occlusion. Yu and
Smith [55] trained a fully convolutional neural network to regress
albedo and normal maps from a single image. Luo et al. [56]
proposed a novel learning-based framework that adapted surface
normal knowledge to decompose a natural image into a reflectance
image and a shading image. Many intrinsic decomposition meth-
ods assume piece-wise constant reflectance [39], [42], [45], [52]
and we also use this assumption in our method. However, some
challenging scenes, such as wrinkles, are still difficult to handle.
In contrast, our system takes an RGB-D sequence as input and can
output high-quality albedo even in wrinkle regions with the help
of geometry reconstruction and self-occlusion model.

2.3 Shape-from-shading and lighting estimation
Intrinsic decomposition methods majorly aim to recover the
albedo and the shading components, while there are also some
methods that additionally focus on recovering the shape or esti-
mating the environment lighting from inputs. Shape-from-shading

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

(SfS) problem [57] focuses on estimating the shape, especially the
surface normal from a single image. As shading is strongly related
to lighting, many of these methods also estimate the environment
lighting to improve the results. Barron and Malik [58] proposed to
apply a mixture of shapes and a mixture of several illuminations
that were embedded in a “soft” segmentation of the input RGB-
D image. Yu et al. [59] made use of a noisy depth map from
an RGB-D camera to resolve ambiguities in shape-from-shading,
by using edges from the RGB image to guide a hole filling
process and create a reliable depth map proxy. In [60], Wu et
al. presented the first real-time method for refinement of depth
data using shape-from-shading. Han et al. [61] applied a shape-
from-shading approach with a general lighting model to estimate
detailed shape from a single RGB-D image. In their lighting
model, a local lighting parameter for each pixel was multiplied
with global lighting and was solved with the help of smoothness
terms and a uniform albedo assumption. Some methods also use an
RGB-D sequence as input for geometry and albedo recovery in a
static scene [62], [63]. Spatially-varying spherical harmonics were
used in [63] by partitioning the object volume into subvolumes and
estimating SH coefficients for each subvolume. Spatially varying
lighting of indoor scenes can also be recovered from a single RGB-
D image [64], or a single RGB image [65]. The spatially varying
lighting was modeled by light sources and indirect illumination in
[64], and an environment map for each pixel in [65], which made
these methods time-consuming. Yu et al. [66] further proposed
a self-supervised approach to decompose an outdoor image into
its albedo, geometry, and illumination, then to achieve relighting.
However, these methods take a single image or a sequence of
a static scene as input and do not take dynamic objects into
account. Unlike previous works [59], [60], [62], [66] that only
consider a single global environment lighting, we use different
masks on a global environment lighting for different surface points
to model the spatially varying lighting accurately and keep real-
time performance.

2.4 Ambient Occlusion

Ambient occlusion (AO) [67] is a shading method that takes the
light occluded by geometries into account. Ambient occlusion was
introduced by Zhukov et al. [68] and yields the percentage of
light blocked by the geometry close to a surface point. Since
then, many algorithms for computing ambient occlusion have
been proposed [69], [70], [71], [72]. Kontkanen and Laine [73]
presented a real-time technique for computing inter-object am-
bient occlusion. Bavoil et al. [74] proposed a real-time ambient
occlusion computation based on a depth image from the eye’s
point of view. Dı́az et al. [75] presented two methods for the fast
generation of ambient occlusion on volumetric models. Laine and
Karras. [76] proposed efficient methods for calculating ambient
occlusion so that the results could match those produced by a
ray tracer. Hauagge et al. [77] presented a method for computing
ambient occlusion for a stack of images of a scene from a fixed
viewpoint and further used it for intrinsic image decomposition.
Although both AO and our self-occlusion model take the occlusion
into account, our method is a different method from AO. AO
methods provide the percentage of light that is blocked by the
geometry, which will not change under different environment
lightings. In contrast, our method calculates the percentage of the
blocked light according to the environment lighting and can obtain
more accurate results, which will be detailed in Section 4.3.

3 METHOD

Our method runs frame-by-frame in real time to reconstruct the
geometry, non-rigid motions, environment lighting, and surface
albedo of the object. For each input frame, we first solve for
non-rigid surface motion and update the base geometry similarly
to [3]. The base geometry is in the pose of the first frame,
called the canonical frame. The non-rigid motions are driven by
nodes that are normally distributed on the surface. Based on the
reconstructed 3D mesh, we run geometry detail fitting to get the
displacement of each vertex (Section 3.3). Then the environment
lighting will be solved (Section 3.1) and the surface albedo will
be updated (Section 3.4) using our proposed self-occlusion model
(Section 3.2). The pipeline is demonstrated in Fig. 2.

3.1 Lighting
For a surface point with surface normal n, its appearance color
is determined by its albedo and received irradiance i(n). Without
considering self-occlusion, irradiance i(n) can be calculated by
an integral of incoming radiance L(ω) over the upper hemisphere
Ω(n), as in [78]:

i(n) =

∫
Ω(n)

L(ω)(n · ω)dω. (1)

We use a cubemap to represent the incoming radiance environ-
ment map, and each pixel in the cubemap corresponds to a light
source. Thus (1) can be formulated as:

i(n) =
∑

ω∈Ω(n)

L(ω)(n · ω)δ(ω), (2)

where δ(ω) denotes the solid angle for the light source ω. The
radiance of each light source is represented by spherical harmonics
(SH) as follows:

L(ω) =
∑
l,m

Ll,mHl,m(ω). (3)

Here, {Hl,m} represent the SH basis functions and {Ll,m} are
the SH coefficients that define the environment lighting. Up to
second-order SH basis functions are used with 0 ⩽ l ⩽ 2, and
−l ⩽ m ⩽ l. We assume that the environment lightings are low-
frequency and can be represented by up to the second order of
spherical harmonics.

Based on the lighting representation above, we reconstruct
the environment lighting defined by 9 SH coefficients {Ll,m} by
minimizing the following energy function containing multi-frame
data terms:

Elight =
∑
t∈T

∑
s∈S(t)

∥∥as · i(nt
s)− cts

∥∥2 , (4)

where as is the albedo of surface point s, nt
s is its normal in frame

t, and cts is the input pixel color in frame t that corresponds to
surface point s. S and T are the sets of surface points and frames,
respectively. Different from [3], we use multi-frame data terms,
which means we also construct data terms from previous frames,
not only the current frame. Multi-frame data terms are commonly
used in offline reconstruction methods [62], [63], while other real-
time methods usually only focus on the current frame. Here we
apply multi-frame data terms in an incremental mode to make
these terms suitable for real-time reconstruction as follows.

To construct data terms from the previous frames, we need to
record some information of these frames first. Note that according

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

 Motion Tracking &
Base Geometry Update

Input Frame
Geometry Detail Fitting

(Section 3.3)
Albedo Update

(Section 3.4)
Lighting Reconstruction

(Section 3.1)

For the next frame

Fig. 2. The pipeline of our framework. Using input RGB-D images, our method first solves for non-rigid surface motion and updates the base
geometry, and geometry detail displacements are obtained by fitting the input depth image. Then the environment lighting is solved with multi-frame
data terms, and the albedo is updated using our self-occlusion model. Some of the reconstruction results and the intermediate results will be used
for the next frame.

to (2) and (3), i(nt
s) is a linear combination of 9 SH coefficients

{Ll,m}:
i(nt

s) =
∑
l,m

bl,m(s, t)Ll,m. (5)

Here {bl,m(s, t)} are the coefficients of this linear combination
and model how each SH coefficient contributes to the received
irradiance. For each pixel in the current frame, we record the
corresponding 3D canonical position, the input pixel color, and
the vector b, and these will be used later. When constructing a
previous data term in (4), the recorded 3D canonical position will
be used to find the current albedo of the surface point, while the
input pixel color and the vector b will be used directly. We apply
a queue with a fixed maximum size for storing the recorded data
above. We further improve the lighting reconstruction with the
following self-occlusion model.

3.2 Self-occlusion Model
Taking self-occlusion into account, a new visibility term V (ω)
should be added into (2) as:

I(n) =
∑

ω∈Ω(n)

L(ω)(n · ω)V (ω)δ(ω). (6)

Here we use I(n) instead of i(n) in (2) to identify that the
incoming radiance is computed using our self-occlusion model,
and also in the following equations. The environment lighting
L(ω) is represented by spherical harmonics solved in Section 3.1,
and then is converted into cubemap. The value of V (ω) is 1 if the
surface point is visible in the direction of light source ω (i.e., the
light is not occluded); otherwise, its value turns to 0. Our novel
self-occlusion model is able to calculate whether the light from
light source ω to a surface point A is occluded by its neighboring
surface points or not.

First, as only the light in the upper hemisphere can reach the
surface point A, we need to find out the neighboring surface points
in the upper hemisphere as candidate neighbors. We traverse all
the vertices in a certain region to judge if it is a candidate neighbor
by: −−→

AB · nA > 0, (7)

where B is a neighboring vertex. An index voxel volume is built
for searching the neighboring vertices, in which each voxel stores
the inside vertex indices. Thus the neighboring vertices can be
obtained by searching the neighboring voxels.

A

B

φ

Fig. 3. Our self-occlusion model. Red for the surface normal; green for
the link-normal.

We then propose a vector named link-normal, to help calculate
self-occlusion. For each candidate neighbor, a link-normal can be
calculated as follows:

m = nA −

 −−→
AB∣∣∣−−→AB

∣∣∣ · nA

 −−→
AB∣∣∣−−→AB

∣∣∣ , (8)

M =
m

|m|
, (9)

where M is the link-normal corresponding to candidate neighbor
B, while m is the link-normal before normalization. According to
(8) and shown in Fig. 3, m is actually the difference between nA

and the projection of nA on
−−→
AB. Thus m is in the direction of

the perpendicular line of nA on
−−→
AB.

We can obtain one link-normal from each candidate neighbor
of the surface point A, and these link-normals compose the link-
normal set of A, denoted as MA.

Light source ω is not occluded if and only if all the angles
between ω and link-normals are acute angles, formulated as:

∀M ∈ MA,M · ω > 0. (10)

That is, the direction of light source ω is in the intersection of all
hemispheres centered on link-normals. Otherwise, the light source
ω will be masked by setting V (ω) in (6) to zero.

Acceleration. We further apply a pruning algorithm to speed up
the calculation in (10). According to (10), we may need to traverse

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

all the link-normals in MA for each light source to determine
whether it is occluded or not, which is a time-consuming step.
Instead, when building up link-normal set MA, we calculate each
angle φ between each connecting line (e.g.,

−−→
AB for candidate

neighbor B as shown in Fig. 3) and the surface normal nA, and
record the smallest angle as φmin. Then if the angle between a
light source ω and the surface normal nA is smaller than φmin,
this light source will be directly set as visible (not occluded)
without traversing all link-normals. This is because that the light
source is in the intersection of all hemispheres centered on link-
normals. This pruning algorithm contributes a lot to our real-time
performance, as many of the light sources in the upper hemisphere
are not occluded and will be set as visible directly.

3.3 Geometry Detail Fitting

The base non-rigid motions are driven by nodes in the motion
graph as in [3]. To model detail non-rigid motions, we add a
displacement to each vertex after non-rigid motion driven by
nodes to fit the input depth image. The displacement d added to
a vertex is obtained by minimizing the following energy function
consisting of a data term and a regularization term:

Egeo(d) = Efit(d) + wregEreg(d), (11)

where wreg is a predefined weight of Ereg .
The data term Efit is computed using the input depth image:

Efit(d) = (Dbase + d−Din)
2
. (12)

Here Dbase is the distance from the vertex after the base non-rigid
motion driven by nodes to the camera, while Din is the input depth
value corresponding to the vertex. The added displacement is in
the viewing direction.

And the regularization term Ereg is formulated as:

Ereg(d) =

d− 1

∥N∥
∑
j∈N

d
(t−1)
j

2

, (13)

where N indicates the set of the neighborhood. The regularization
term constrains the displacement d to be close to the average of
the neighboring displacements in the previous frame, contributing
to smooth results.

As the topology of the base mesh may change during the ge-
ometry updating process, we use a voxel volume in the canonical
frame to store the average displacement of vertices in each voxel
in the previous frame. The displacements of the neighbors in N in
the previous frame can be obtained directly from this volume, with
each neighbor corresponding to a voxel. Then the volume will get
updated for the next frame.

With these designs, the proposed detail fitting method can
calculate the displacement of each vertex independently and fully
in parallel, which helps to obtain high-quality geometry in real
time without solving large linear problems. Also, this method can
be easily integrated into other real-time systems but still keep the
real-time performance.

It should be noted that the data term in (11) to fit the input
depth is effective only when the vertex corresponds to a valid
depth value in the input depth map. If a vertex corresponds to a
pixel with no depth data, its displacement is computed only using
the regularization term.

3.4 Albedo Update
The last step for each frame is to update the albedo. The albedo
for each vertex x is updated by minimizing the following energy
function:

Ealbedo(ax) = Edata + wtEt + wsEs, (14)

which contains three terms: data term, time consistency term, and
spatial smooth term. wt and ws are the weights of Et and Es,
respectively.

The first term Edata is a data term based on the refined
geometry, and is defined as:

Edata(ax) = ∥ax · I(nx)− C(x)∥2 . (15)

Here I(nx) is the incoming irradiance obtained using our self-
occlusion model in Section 3.2, and C(x) is the corresponding
pixel color in the input color image.

The second term Et is to keep the time consistency of the
albedo to the previous frame:

Et(ax) =
∥∥∥ax − a(t−1)

x

∥∥∥2 . (16)

And its weight wt is a predefined parameter.
The spatial smooth term Es is formulated similarly to [79],

based on the assumption of piece-wise constant reflectance:

Es(ax) =
∑
j∈N

ϕ(Γ(x)− Γ(j))
∥∥∥ax − a

(t−1)
j

∥∥∥2 , (17)

where N indicates the set of neighborhood. Different from [79],
we use a certain region instead of the one-ring neighborhood for a
larger search range. Γ(x) indicates the chromaticity of the vertex
x, and is computed by Γ(x) = C(x)/G(x), where C is the color
and G is the intensity. The spatial smooth term weight ws is a
predefined coefficient.

Similarly to geometry detail fitting, we use an albedo volume
to store the solved albedo, and each voxel saves the average albedo
of the inside vertices. The previous albedo values in (16) and
(17) can be found from this volume, and each neighbor in N
corresponds to a voxel. The albedo of each vertex is also calculated
independently and in parallel, contributing to our system’s real-
time performance.

4 EXPERIMENTS

In this section, we first present the performance and the parameter
settings of our system. Then, we evaluate several parts of our
pipeline. Besides, we present our results on various dynamic ob-
jects, also with qualitative and quantitative comparisons with other
methods. Sequence results can be found in our accompanying
video.

4.1 Performance and Parameters
Our system is implemented on a computer with a 3.40-GHz four-
core CPU, 16 GB RAM, and an NVIDIA GTX GeForce 2080Ti
graphics card. We use Intel RealSense SR300 to record RGB-
D sequences with the resolution of 1280 × 720 at 30 fps. Our
pipeline runs at 34 ms for each frame, and the detailed running
time of each process can be found in Table 1. Parallel computing is
implemented using CUDA on the graphics card. Note that because
the environment lighting is usually not changed, we run lighting
reconstruction every two frames, which takes 6 ms, and on average
it takes 3 ms for each frame.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

TABLE 1
Running time of our system.

Process Running time
Motion tracking 18 ms
Base geometry update 6 ms
Geometry detail fitting 1 ms
Lighting reconstruction 3 ms
Albedo update 4 ms
Everything else 2 ms
Total 34 ms

Fig. 4. Evaluation of self-occlusion model. Left: input color image;
middle: reconstructed albedo without self-occlusion model; right: our
albedo.

We use a cubemap with 8×8 light sources on each face (totally
384 light sources) to represent the environment lighting. The voxel
volume resolution is 320× 320× 320. The search radius for the
candidate neighbor in our self-occlusion model is set to around 8
cm. For geometry reconstruction, we set wreg in (11) to 2 and the
radius of neighborhood in (13) to 1 cm. For albedo update, we
set wt and ws in (14) to 30 and 10 respectively, and the radius of
neighborhood in (17) to 2 cm.

4.2 Evaluations

Evaluation of self-occlusion model. We propose a novel self-
occlusion model to calculate the incident light by taking the
occlusion of neighboring surface points into account. We run our
method with and without the self-occlusion model, and the results
are demonstrated in Fig. 4. Without our self-occlusion model, the
surfaces with significant self-occlusions will get poor results.

Evaluation of geometry detail fitting. To improve the recon-
structed geometry and albedo, we add a displacement to each
vertex on the mesh. Since we get self-occlusion information from
geometry and surface normal is important in albedo update, high-
quality albedo also benefits from accurate geometry. We compare
the results using geometry displacements and the results without,

Fig. 5. Evaluation of geometry detail fitting. Left: normal map from depth
input and input color image; middle: reconstructed geometry and albedo
without geometry detail fitting; right: our geometry and albedo.

Fig. 6. Evaluation of albedo spatial smooth term. Left: input color image;
middle: reconstructed albedo without albedo spatial smooth term; right:
our albedo.

0

2

4

6

8

10

12

14

16

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 4 8 12 16 20 24

T
im

e
(m

s)

M
S

E

Radius (cm)

MSE Time

Real-time

Reconstructed

Albedo

Input

Color

Fig. 7. Ablation study on the search radius of the candidate neighbor
for self-occlusion. The length of the towel is 75 cm, which leads to long-
range self-occlusion. The dotted line identifies the time limit for real-time
performance.

as shown in Fig. 5. We can see that geometry detail fitting
improves geometry and further contributes to better albedo.

Evaluation of albedo spatial smooth term. In our albedo update
method, we add a spatial smooth term in the energy function
(14). This term forces the albedo of a surface point to be close
to the albedos of the neighboring points in a certain region,
based on chromaticity differences. We remove this term, and the
reconstructed results can be found in Fig. 6. The results show
that this term helps us get smooth albedo despite input noises and
reconstruction inaccuracies.

Ablation study on the search radius of self-occlusion. In our
self-occlusion model, a major parameter is the search radius for
the candidate neighbor. We select different values of this radius
and run our method using a challenging input sequence with
long-range self-occlusion. In order to better evaluate different
parameters, we use synthetic data generated by an offline render
of which the ground truth can be obtained. To synthesize this
sequence, we first capture a sequence of real data with long-range
self-occlusion. Then we reconstruct the geometry and motions
using our method, and set the albedo and environment lighting
to given ones. Finally, we use an offline render to render the
object in the original camera views and get the synthetic color
images. When running using the synthetic data, the original depth
images from the captured real data and the synthetic color images
are inputted. The environment lighting is initialized to be the

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Input Color Albedo of

NIID-Net

Fused Albedo of

NIID-Net

Albedo of

InverseRenderNet

Fused Albedo of

InverseRenderNet

Our Albedo

Fig. 8. Comparison with intrinsic fusions using NIID-Net [56] and InverseRenderNet [55]. We show both the direct output albedo and the fused
albedo in data sequences of the two compared methods.

Fig. 9. Comparison with [3]. Left: input color images; middle: recon-
structed albedo of [3]; right: our albedo.

ground truth. In Fig. 7, we show the standard mean-squared errors
(MSE), running times, and reconstructed albedos on different
radius parameters, as well as several input frames. From Fig. 7, we
can see that increasing the radius will lead to better reconstruction
results but will take more time costs.

4.3 Results and Comparisons

We show our reconstructed results on different objects in Fig. 15,
as well as in our accompanying video. Our method is able to
reconstruct different objects, such as garments, clothes, toys,
paper, cushions, and bags. Besides, multiple objects can also be
handled. The live demos running in real time can also be found in
Fig. 1 and in our video.

Comparison with [3]. We compare our method with [3], which
reconstructs the geometry, albedo, non-rigid motions, and lighting
in real time. As shown in Fig. 9, our method outperforms the
method in [3], especially in the areas with wrinkles, where the
self-occlusions are obvious.

Comparison with intrinsic fusions. Based on a state-of-the-
art intrinsic decomposition method NIID-Net [56], we fuse the
output albedo map of each frame into a model. The geometry and
motions of the model are reconstructed by [3]. We also compare
with a self-supervision method InverseRenderNet [55] in the same
way. Both intrinsic decomposition methods are implemented by
the original authors and use the models trained by the original
authors. The albedo maps and the fused results are shown in
Fig. 8. From the results, we can see that our method is able to

Fig. 10. Comparison with AO reconstruction. Left: input color image
and reconstructed geometry; middle: percentage of light not occluded
and reconstructed albedo in AO reconstruction; right: our percentage of
light not occluded and our albedo. (Gray scale [0, 255] corresponds to
percentage [0, 100%])

reconstruct high-quality albedo, whereas the compared methods
can not fully eliminate the effects of wrinkles. There are also
some color distortions in the output albedos of NIID-Net [56] and
InverseRenderNet [55], such as lower color saturation, which can
lead to great RGB errors. Besides, the method in NIID-Net [56]
and InverseRenderNet [55] can not reach real-time performance.

Comparison with ambient occlusion (AO) reconstruction. Am-
bient occlusion is widely used in computer graphics, which takes
the geometry as input and approximates the percentage of light
reaching a point based on occlusion. Although both AO and our
method take the occlusion into account, our method is a different
method from AO. AO methods provide the percentage of light
that is blocked by the geometry, which will not change according
to environment lightings. In contrast, our method masks the light
sources that are occluded, so the percentage of the blocked light
changes under different environment lightings. We replace our
self-occlusion model with the image-space horizon-based ambi-
ent occlusion (HBAO) method [74] and run our reconstruction
pipeline, and the results are shown in Fig. 10. We also show the
percentage of light not occluded in Fig. 10, which is the direct
output of HBAO [74] for the AO reconstruction; while for our
method, we compute the ratio of the received light with and
without our self-occlusion model as this percentage. From the
results, we can see that our self-occlusion model can provide more
accurate lighting and albedo than the reconstruction using AO,

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

TABLE 2
MSE, LMSE, DSSIM, average RGB errors, and variances on synthetic data with 840 frames. Lower is better for all metrics.

Method MSE LMSE DSSIM Error Variance
Guo et al. [3] 0.00528 0.00501 0.0262 20.24 39.28
Fusion of NIID-Net [56] 0.00653 0.00551 0.0216 44.23 6.93
Fusion of InverseRenderNet [55] 0.01608 0.00984 0.0329 57.76 390.13
AO reconstruction 0.00247 0.00215 0.0143 12.56 9.07
Ours w/o self-occ 0.00342 0.00284 0.0162 19.79 12.66
Ours w/o geo detail 0.00314 0.00306 0.0186 10.86 4.45
Ours w/o albedo smooth 0.00310 0.00307 0.0240 9.76 13.27
Ours final 0.00210 0.00194 0.0142 8.31 2.42

TABLE 3
WHDR and two regions’ variances on real data with 840 frames. Lower

is better for all metrics.

Method WHDR(%) Var. 1 Var. 2
Guo et al. [3] 16.32 70.41 100.28
Fusion of NIID-Net [56] 14.34 7.62 7.37
Fusion of InverseRenderNet [55] 29.92 73.27 270.86
AO reconstruction 8.78 8.84 12.25
Ours w/o self-occ 9.70 11.79 19.76
Ours w/o geo detail 8.18 6.03 8.25
Ours w/o albedo smooth 12.19 24.76 44.07
Ours final 5.30 4.69 5.99

4

8

16

32

64

0 30 60 90 120 150 180 210 240 270 300

[Guo et al.] Fusion of NIID-Net

Fusion of InverseRenderNet AO reconstruction

Ours w/o self-occ Ours w/o geo detail

Ours w/o albedo smooth Ours final

Fig. 11. RGB errors on a synthetic data sequence. Vertical logarithmic
coordinates for the errors and horizontal coordinates for the frame
indices. (320 frames shown)

which uses fixed percentages that do not change under different
lightings, especially in the reconstruction under strong directional
light. More comparisons can be found in Fig. 16 and in our
accompanying video.

We also performed quantitative comparisons of reconstructed
albedo on both synthetic data and real data. The synthetic data is
generated using an offline render. For synthetic data with dense
ground truth, following previous works [33], [47], we report the
standard mean-squared error (MSE), local mean-squared error
(LMSE), and dissimilarity version of the structural similarity index
measure (DSSIM). We also calculate the average RGB differences
from the ground truth albedo as well as albedo variances on the
regions with the same ground truth albedo, and the results can
be found in Table 2. These results demonstrate that our method
outperforms other methods in all metrics. The average RGB errors
are computed by

1

∥P∥
∑
x∈P

∥rgb(x)− rgb′(x)∥22 , (18)

1

4

16

64

256

1024

0 30 60 90 120 150 180 210 240 270 300

[Guo et al.] Fusion of NIID-Net

Fusion of InverseRenderNet AO reconstruction

Ours w/o self-occ Ours w/o geo detail

Ours w/o albedo smooth Ours final

Fig. 12. Variances on a synthetic data sequence. Vertical logarithmic
coordinates for the variances and horizontal coordinates for the frame
indices. (320 frames shown)

where x is a pixel and P is the set of pixels corresponding to the
foreground. Function rgb and rgb′ return the three-channel RGB
values of the reconstructed albedo and the ground truth albedo,
respectively. The variances are computed by

1

∥Q∥
∑
x∈Q

∥∥G(x)−G
∥∥2 , (19)

where Q is the set of pixels in the selected region. G returns
the intensity, and G is the average of intensity in Q. We also
demonstrate the curves of errors and variances of a sequence in
Fig. 11 and Fig. 12 with logarithmic coordinates. The synthetic
data is generated in the same way as the one in Sec. 4.2. An
example of the synthetic sequence is shown in the last row of
Fig. 16. It should be noted that there is scale ambiguity between
lighting and albedo in intrinsic fusion methods when computing
the albedo RGB errors. So we multiplied a uniform constant to all
the output albedo values of [56] to make sure its average intensity
is the same as the ground truth, and also for [55].

For quantitative comparisons on real data, as we cannot
obtain the dense ground truth albedo,
we compare the weighted human dis-
agreement rate (WHDR) [42] and the
variances on manually selected regions
with consistent albedos, and the results
are shown in Table 3. The selected four
regions are shown in the figure here.
These regions are selected in the canon-
ical frame and will be deformed accord-
ing to the motions. The WHDR metric
is the average rate of how often the results and the ground truth

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 13. Relighting. Top: environment lighting cubemaps; bottom: re-
lighted results.

Fig. 14. Texture editing. We add three different patterns on two recon-
structed objects.

relations between two points are inconsistent. Following [42], for
each frame we first sample points in the four selected regions, and
build edges between each pair of points. We obtain the ground
truth by assuming that the points in region 1 and region 4 have
the same albedo intensity, points in region 2 have brighter albedo
than them, and points in region 3 are further brighter than those
in region 2. We sample 20 points in region 1 and 10 points in
each of the other regions. Totally C2

50 = 1225 edges with ground
truth relations are built on these 50 points. The final WHDR is
computed by doing an average of all frames. All the compared
methods share the same sampling points. δ is set to 10%, and
all the edge weights are set to 1. Please refer to [42] for more
details of WHDR. The variances in Table 3 are those of region 1
and region 2. Color values range from 0 to 255 in our quantitative
comparisons.

4.4 Applications

As we reconstruct the albedo, geometry, and non-rigid motions,
applications such as relighting and texture editing can be imple-
mented with our method.

Relighting. Based on our reconstruction, the recorded object
can be easily relighted by a given environment lighting. We use an
offline render to generate the relighting sequences. Some results
and the corresponding lighting cubemaps are shown in Fig. 13.
Sequence results with rotating environment lightings are provided
in our accompanying video.

Texture editing. It’s also convenient to edit the reconstructed
albedo in our method. The base geometry is reconstructed in
the canonical frame, so we only need to edit the albedos of the
selected surface points in the canonical frame. Then the solved

non-rigid motions and displacements can be used to drive the
object into different poses and to render the edited object. The
rendered results are demonstrated in Fig. 14. Sequence results can
also be found in our accompanying video.

5 DISCUSSIONS

Our method can not handle the self-occlusion caused by surfaces
in a long distance well, as we use a local search range when
computing self-occlusion in real time. Also, cast shadows from
other objects of which the geometries are not reconstructed can
not be handled well. The motion tracking method that we use
may fail if fast motions and topology changes occur, and this
will further lead to failure in subsequent reconstructions. We
use albedo to represent Lambertian surfaces; thus, highlights and
specular reflectance cannot be well modeled. Deep learning may
be used to improve performance. Please refer to our accompanying
video for some examples of failure cases.

6 CONCLUSIONS

We propose a lightweight spatially varying lighting model that
uses a masking strategy for each vertex to model the self-occlusion
effect. Benefiting from the simple masking strategy, the model
can be used in the solving of albedo without involving too much
additional computation cost. A per-vertex displacement field is
also reconstructed to improve the accuracy of motion estimation,
and the real-time performance is maintained here by constructing
regularization terms just from the historical data. Compared with
the state-of-the-art techniques based on a single view, this method
solves more accurate appearances as well as more detailed surface
motions.

ACKNOWLEDGMENTS

This work was supported by Beijing Natural Science Foundation
(JQ19015), the NSFC (No.62021002, 61727808), the National
Key R&D Program of China 2018YFA0704000. This work was
supported by the Institute for Brain and Cognitive Science, Ts-
inghua University (THUIBCS) and Beijing Laboratory of Brain
and Cognitive Intelligence, Beijing Municipal Education Com-
mission (BLBCI). Feng Xu is the corresponding author.

REFERENCES

[1] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Reconstruc-
tion and tracking of non-rigid scenes in real-time,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
343–352.

[2] M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, and M. Stamminger,
“Volumedeform: Real-time volumetric non-rigid reconstruction,” in Eu-
ropean Conference on Computer Vision. Springer, 2016, pp. 362–379.

[3] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and Y. Liu, “Real-time geometry,
albedo, and motion reconstruction using a single rgb-d camera,” ACM
Transactions on Graphics (ToG), vol. 36, no. 4, p. 1, 2017.

[4] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and
M. Sagar, “Acquiring the reflectance field of a human face,” in Proceed-
ings of the 27th annual conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co., 2000, pp. 145–
156.

[5] O. Alexander, M. Rogers, W. Lambeth, J.-Y. Chiang, W.-C. Ma, C.-
C. Wang, and P. Debevec, “The digital emily project: Achieving a
photorealistic digital actor,” IEEE Computer Graphics and Applications,
vol. 30, no. 4, pp. 20–31, 2010.

[6] P. Gotardo, J. Riviere, D. Bradley, A. Ghosh, and T. Beeler, “Practical
dynamic facial appearance modeling and acquisition,” ACM Transactions
on Graphics (TOG), vol. 37, no. 6, pp. 1–13, 2018.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 15. Results of different dynamic objects. Row 1: input color images; row 2: reconstructed geometries; row 3: normal maps; row 4: albedo.

Input Color Geometry of

[Guo et al.]

Our Geometry Albedo of

[Guo et al.]

Our AlbedoAlbedo of

InverseRenderNet

Albedo of

NIID-Net

Albedo of

AO reconstruction

Fig. 16. Comparisons with [3], NIID-Net [56], InverseRenderNet [55], and AO reconstruction on different dynamic objects. The last row is from a
synthetic sequence.

[7] M. Dou, P. Davidson, S. R. Fanello, S. Khamis, A. Kowdle, C. Rhemann,
V. Tankovich, and S. Izadi, “Motion2fusion: Real-time volumetric per-
formance capture,” ACM Transactions on Graphics (TOG), vol. 36, no. 6,
pp. 1–16, 2017.

[8] R. Du, M. Chuang, W. Chang, H. Hoppe, and A. Varshney, “Montage4d:
interactive seamless fusion of multiview video textures,” in Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 2018, pp. 1–11.

[9] K. Guo, P. Lincoln, P. Davidson, J. Busch, X. Yu, M. Whalen, G. Harvey,
S. Orts-Escolano, R. Pandey, J. Dourgarian et al., “The relightables:
Volumetric performance capture of humans with realistic relighting,”
ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–19, 2019.

[10] C. Zheng and F. Xu, “Dtexfusion: Dynamic texture fusion using a
consumer rgbd sensor,” IEEE Transactions on Visualization & Computer
Graphics, no. 01, pp. 1–1, 2021.

[11] T. Tung, S. Nobuhara, and T. Matsuyama, “Simultaneous super-
resolution and 3d video using graph-cuts,” in 2008 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[12] D. Casas, M. Volino, J. Collomosse, and A. Hilton, “4d video textures for
interactive character appearance,” in Computer Graphics Forum, vol. 33,
no. 2. Wiley Online Library, 2014, pp. 371–380.

[13] F. Prada, M. Kazhdan, M. Chuang, A. Collet, and H. Hoppe, “Spatiotem-

poral atlas parameterization for evolving meshes,” ACM Transactions on
Graphics (TOG), vol. 36, no. 4, pp. 1–12, 2017.

[14] A. E. Ichim, S. Bouaziz, and M. Pauly, “Dynamic 3d avatar creation from
hand-held video input,” ACM Transactions on Graphics (ToG), vol. 34,
no. 4, pp. 1–14, 2015.

[15] P. Garrido, M. Zollhöfer, D. Casas, L. Valgaerts, K. Varanasi, P. Pérez,
and C. Theobalt, “Reconstruction of personalized 3d face rigs from
monocular video,” ACM Transactions on Graphics (TOG), vol. 35, no. 3,
pp. 1–15, 2016.

[16] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner,
“Face2face: Real-time face capture and reenactment of rgb videos,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2387–2395.

[17] S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li, “Photorealistic facial
texture inference using deep neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5144–5153.

[18] K. Nagano, J. Seo, J. Xing, L. Wei, Z. Li, S. Saito, A. Agarwal,
J. Fursund, H. Li, R. Roberts et al., “pagan: real-time avatars using
dynamic textures,” in SIGGRAPH Asia 2018 Technical Papers. ACM,
2018, p. 258.

[19] C. Wu, T. Shiratori, and Y. Sheikh, “Deep incremental learning for

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

efficient high-fidelity face tracking,” in SIGGRAPH Asia 2018 Technical
Papers. ACM, 2018, p. 234.

[20] S. Lombardi, J. Saragih, T. Simon, and Y. Sheikh, “Deep appearance
models for face rendering,” ACM Transactions on Graphics (TOG),
vol. 37, no. 4, pp. 1–13, 2018.

[21] S.-E. Wei, J. Saragih, T. Simon, A. W. Harley, S. Lombardi, M. Perdoch,
A. Hypes, D. Wang, H. Badino, and Y. Sheikh, “Vr facial animation via
multiview image translation,” ACM Transactions on Graphics (TOG),
vol. 38, no. 4, p. 67, 2019.

[22] R. Martin-Brualla, R. Pandey, S. Yang, P. Pidlypenskyi, J. Taylor,
J. Valentin, S. Khamis, P. Davidson, A. Tkach, P. Lincoln et al.,
“Lookingood: enhancing performance capture with real-time neural re-
rendering,” ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp.
1–14, 2018.

[23] R. Pandey, A. Tkach, S. Yang, P. Pidlypenskyi, J. Taylor, R. Martin-
Brualla, A. Tagliasacchi, G. Papandreou, P. Davidson, C. Keskin et al.,
“Volumetric capture of humans with a single rgbd camera via semi-
parametric learning,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 9709–9718.

[24] C. Rother, M. Kiefel, L. Zhang, B. Schölkopf, and P. Gehler, “Recovering
intrinsic images with a global sparsity prior on reflectance,” Advances in
neural information processing systems, vol. 24, pp. 765–773, 2011.

[25] L. Shen and C. Yeo, “Intrinsic images decomposition using a local and
global sparse representation of reflectance,” in CVPR 2011. IEEE, 2011,
pp. 697–704.

[26] A. Bousseau, S. Paris, and F. Durand, “User assisted intrinsic images,”
ACM Transactions on Graphics, vol. 28, no. 5, pp. 130–1, 2009.

[27] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman, “Ground
truth dataset and baseline evaluations for intrinsic image algorithms,” in
2009 IEEE 12th International Conference on Computer Vision. IEEE,
2009, pp. 2335–2342.

[28] E. Garces, A. Munoz, J. Lopez-Moreno, and D. Gutierrez, “Intrinsic
images by clustering,” in Computer graphics forum, vol. 31, no. 4. Wiley
Online Library, 2012, pp. 1415–1424.

[29] J. T. Barron and J. Malik, “Color constancy, intrinsic images, and shape
estimation,” in European Conference on Computer Vision. Springer,
2012, pp. 57–70.

[30] ——, “Shape, albedo, and illumination from a single image of an
unknown object,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2012, pp. 334–341.

[31] S. Bi, X. Han, and Y. Yu, “An l1 image transform for edge-preserving
smoothing and scene-level intrinsic decomposition,” ACM Transactions
on Graphics (TOG), vol. 34, no. 4, pp. 1–12, 2015.

[32] Z. Cheng, Y. Zheng, S. You, and I. Sato, “Non-local intrinsic decom-
position with near-infrared priors,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 2521–2530.

[33] Q. Chen and V. Koltun, “A simple model for intrinsic image decom-
position with depth cues,” in Proceedings of the IEEE International
Conference on Computer Vision, 2013, pp. 241–248.

[34] J. Jeon, S. Cho, X. Tong, and S. Lee, “Intrinsic image decomposition
using structure-texture separation and surface normals,” in European
Conference on Computer Vision. Springer, 2014, pp. 218–233.

[35] M. Hachama, B. Ghanem, and P. Wonka, “Intrinsic scene decomposition
from rgb-d images,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 810–818.

[36] X. Wei, G. Chen, Y. Dong, S. Lin, and X. Tong, “Object-based illumi-
nation estimation with rendering-aware neural networks,” in European
Conference on Computer Vision. Springer, 2020, pp. 380–396.

[37] G. Ye, E. Garces, Y. Liu, Q. Dai, and D. Gutierrez, “Intrinsic video and
applications,” ACM Transactions on Graphics (ToG), vol. 33, no. 4, pp.
1–11, 2014.

[38] N. Bonneel, K. Sunkavalli, J. Tompkin, D. Sun, S. Paris, and H. Pfister,
“Interactive intrinsic video editing,” ACM Transactions on Graphics
(TOG), vol. 33, no. 6, pp. 1–10, 2014.

[39] A. Meka, M. Zollhöfer, C. Richardt, and C. Theobalt, “Live intrinsic
video,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–14,
2016.

[40] A. Meka, G. Fox, M. Zollhöfer, C. Richardt, and C. Theobalt, “Live
user-guided intrinsic video for static scenes,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 11, pp. 2447–2454,
2017.

[41] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in European conference
on computer vision. Springer, 2012, pp. 611–625.

[42] S. Bell, K. Bala, and N. Snavely, “Intrinsic images in the wild,” ACM
Transactions on Graphics (TOG), vol. 33, no. 4, pp. 1–12, 2014.

[43] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[44] B. Kovacs, S. Bell, N. Snavely, and K. Bala, “Shading annotations in the
wild,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 6998–7007.

[45] Z. Li and N. Snavely, “Cgintrinsics: Better intrinsic image decomposition
through physically-based rendering,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 371–387.

[46] T. Zhou, P. Krahenbuhl, and A. A. Efros, “Learning data-driven re-
flectance priors for intrinsic image decomposition,” in Proceedings of
the IEEE International Conference on Computer Vision, 2015, pp. 3469–
3477.

[47] T. Narihira, M. Maire, and S. X. Yu, “Direct intrinsics: Learning albedo-
shading decomposition by convolutional regression,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 2992–
2992.

[48] J. Shi, Y. Dong, H. Su, and S. X. Yu, “Learning non-lambertian object
intrinsics across shapenet categories,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 1685–1694.

[49] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf, “Revisiting deep
intrinsic image decompositions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 8944–8952.

[50] Z. Li and N. Snavely, “Learning intrinsic image decomposition from
watching the world,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 9039–9048.

[51] L. Cheng, C. Zhang, and Z. Liao, “Intrinsic image transformation via
scale space decomposition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 656–665.

[52] Y. Liu, Y. Li, S. You, and F. Lu, “Unsupervised learning for intrinsic
image decomposition from a single image,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 3248–3257.

[53] S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Jacobs, “Sfsnet:
Learning shape, reflectance and illuminance of facesin the wild’,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 6296–6305.

[54] Y. Kanamori and Y. Endo, “Relighting humans: occlusion-aware
inverse rendering for full-body human images,” arXiv preprint
arXiv:1908.02714, 2019.

[55] Y. Yu and W. A. Smith, “Inverserendernet: Learning single image inverse
rendering,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3155–3164.

[56] J. Luo, Z. Huang, Y. Li, X. Zhou, G. Zhang, and H. Bao, “Niid-net:
Adapting surface normal knowledge for intrinsic image decomposition
in indoor scenes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 12, pp. 3434–3445, 2020.

[57] B. K. Horn, “Shape from shading: A method for obtaining the shape of
a smooth opaque object from one view,” 1970.

[58] J. T. Barron and J. Malik, “Intrinsic scene properties from a single rgb-d
image,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 17–24.

[59] L.-F. Yu, S.-K. Yeung, Y.-W. Tai, and S. Lin, “Shading-based shape
refinement of rgb-d images,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 1415–1422.

[60] C. Wu, M. Zollhöfer, M. Nießner, M. Stamminger, S. Izadi, and
C. Theobalt, “Real-time shading-based refinement for consumer depth
cameras,” ACM Transactions on Graphics (ToG), vol. 33, no. 6, pp. 1–
10, 2014.

[61] Y. Han, J.-Y. Lee, and I. So Kweon, “High quality shape from a single
rgb-d image under uncalibrated natural illumination,” in Proceedings of
the IEEE International Conference on Computer Vision, 2013, pp. 1617–
1624.

[62] X. Zuo, S. Wang, J. Zheng, and R. Yang, “Detailed surface geometry
and albedo recovery from rgb-d video under natural illumination,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 3133–3142.

[63] R. Maier, K. Kim, D. Cremers, J. Kautz, and M. Nießner, “Intrinsic3d:
High-quality 3d reconstruction by joint appearance and geometry op-
timization with spatially-varying lighting,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 3114–3122.

[64] G. Xing, Y. Liu, H. Ling, X. Granier, and Y. Zhang, “Automatic spatially
varying illumination recovery of indoor scenes based on a single rgb-
d image,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 4, pp. 1672–1685, 2018.

[65] Z. Li, M. Shafiei, R. Ramamoorthi, K. Sunkavalli, and M. Chan-
draker, “Inverse rendering for complex indoor scenes: Shape, spatially-

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

varying lighting and svbrdf from a single image,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 2475–2484.

[66] Y. Yu, A. Meka, M. Elgharib, H.-P. Seidel, C. Theobalt, and W. A. Smith,
“Self-supervised outdoor scene relighting,” in European Conference on
Computer Vision. Springer, 2020, pp. 84–101.

[67] M. Knecht, “State of the art report on ambient occlusion,” Vienna
Institute of Technology, Technical Report, 2007.

[68] S. Zhukov, A. Iones, and G. Kronin, “An ambient light illumination
model,” in Eurographics Workshop on Rendering Techniques. Springer,
1998, pp. 45–55.

[69] F. Hernell, P. Ljung, and A. Ynnerman, “Local ambient occlusion
in direct volume rendering,” IEEE Transactions on Visualization and
Computer Graphics, vol. 16, no. 4, pp. 548–559, 2009.

[70] P. Shanmugam and O. Arikan, “Hardware accelerated ambient occlusion
techniques on gpus,” in Proceedings of the 2007 symposium on Interac-
tive 3D graphics and games, 2007, pp. 73–80.

[71] C. K. Reinbothe, T. Boubekeur, and M. Alexa, “Hybrid ambient occlu-
sion.” Eurographics (Areas Papers), vol. 5, 2009.

[72] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and
K. Hinrichs, “Interactive volume rendering with dynamic ambient occlu-
sion and color bleeding,” in Computer Graphics Forum, vol. 27, no. 2.
Wiley Online Library, 2008, pp. 567–576.

[73] J. Kontkanen and S. Laine, “Ambient occlusion fields,” in Proceedings
of the 2005 symposium on Interactive 3D graphics and games, 2005, pp.
41–48.

[74] L. Bavoil, M. Sainz, and R. Dimitrov, “Image-space horizon-based
ambient occlusion,” in ACM SIGGRAPH 2008 talks, 2008, pp. 1–1.

[75] J. Diaz, P.-P. Vazquez, I. Navazo, and F. Duguet, “Real-time ambient
occlusion and halos with summed area tables,” Computers & Graphics,
vol. 34, no. 4, pp. 337–350, 2010.

[76] S. Laine and T. Karras, “Two methods for fast ray-cast ambient occlu-
sion,” in Computer Graphics Forum, vol. 29, no. 4. Wiley Online
Library, 2010, pp. 1325–1333.

[77] D. Hauagge, S. Wehrwein, K. Bala, and N. Snavely, “Photometric
ambient occlusion for intrinsic image decomposition,” IEEE transactions
on pattern analysis and machine intelligence, vol. 38, no. 4, pp. 639–651,
2015.

[78] R. Ramamoorthi and P. Hanrahan, “An efficient representation for irradi-
ance environment maps,” in Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, 2001, pp. 497–500.

[79] M. Zollhöfer, A. Dai, M. Innmann, C. Wu, M. Stamminger, C. Theobalt,
and M. Nießner, “Shading-based refinement on volumetric signed dis-
tance functions,” ACM Transactions on Graphics (TOG), vol. 34, no. 4,
pp. 1–14, 2015.

Chengwei Zheng received a B.S. degree in
software engineering from Tsinghua University,
Beijing, China, in 2018. He is currently working
toward a Ph.D. degree in the School of Software,
Tsinghua University. His research interests in-
clude dynamic reconstruction and 3D animation.

Wenbin Lin received a B.S. degree in Depart-
ment of Automation, Tsinghua University, Bei-
jing, China, in 2020. He is currently working to-
ward a Ph.D. degree in the School of Software,
Tsinghua University. His research interests in-
clude dynamic reconstruction and 3D animation.

Feng Xu received a B.S. degree in physics from
Tsinghua University, Beijing, China, in 2007 and
Ph.D. in automation from Tsinghua University,
Beijing, China, in 2012. He is currently an as-
sociate professor in the School of Software, Ts-
inghua University. His research interests include
face animation, performance capture, and 3D
reconstruction.

